In Brief:

On this site you will find pictures and information about some of the electronic, electrical, electrotechnical and mecanichal technology relics that the Frank Sharp Private museum has accumulated over the years .
There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.


Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Tele Video Rama Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.
Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.
OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

HOW TO USE THIS SITE:
- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the right blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. It starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, reaching the bottom end of each page then click on the Older Post button.


- If you come here at the main page from a bookmark you can visit all the site scrolling the right blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.


- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !


©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of
Engineer Frank Sharp. NOTHING HERE IS FOR SALE !

--------------------------------------------------------------------------


Thursday, September 29, 2011

SONY SLV-D900E YEAR 2003.






















SONY SLV-D900E CHASSIS DECK INTERNAL VIEW.




DAEWOO ST771 YEAR 2003.






DAEWOO ST771 CHASSIS DECK INTERNAL VIEW.






GRUNDIG SYSTEM 2000 VIDEO 2X4-PLUS YEAR 1980.













Video 2000 was developed jointly by Philips and Grundig as a replacement for their ageing VCR, VCR-LP and SVR format machines and as a direct competitor to VHS and BETA.  It boasted a flip-over cassette fractionally bigger than a VHS cassette, which could record up to 4 hours on each side. It also used a system of "Automatic" tracking with it's Dynamic Track Following (DTF) system. This meant that the tracking was always 100% perfect even on still pause and picture search modes. It achieved this by having the video heads mounted on piezo electric actuators which followed the tracks as they were scanned.

 During the course of the 1970's, Philips, in Holland, and their German associates Grundig continued to develop the VCR format, increasing both the record/playback time and the quality of the images, and adding more and more features to their already sophisticated machines. This development spawned VCR-LP and SVR, but by the end of the seventies Philips were promising the imminent arrival of a remarkable new format. This was called VCC, for Video Compact Cassette, but is more usually known as Video 2000.

(Philips also invented the standard music cassette format, which they called ACC -- Audio Compact Cassette. This name didn't catch on either!)
Despite missing several launch dates, when V2000 finally arrived in 1980 it was indeed as revolutionary as they had promised. Alone of all video cassette formats, VCC tapes could be turned over, just like audio tapes. This meant that a cassette almost exactly the same size as a VHS tape could hold six or even eight hours, in total. A later version with long play increased this to a staggering 16 hours!

 V2000 machines were also extremely sophisticated, using microprocessor control for all manner of trick-play and programming features. Perhaps the most advanced feature of all was Dynamic Track Following, or DTF; this was an automatic tracking system which moved the heads as they scanned each track:
 The head chips were mounted on the drum on tiny chips of piezo-electric crystal. This crystal changes shape when an electric current is passed through it, so by applying the appropriate signal, the heads could be kept in the perfect position at all times. Consequently, V2000 decks needed no Tracking control, and could produce a perfect, noise-free picture at all speeds, in both directions (even playing in reverse), and on recordings made on other machines which were out of alignment.

General Construction

On the plus side these VCR's were construted in a modular fashion with each printed circuit board carrying out a distinct function. On the down side, these many PCB are connected together using plugs, sockets and wire links which are prone to failure. The electronics inside the VCR's is by todays standard fairly straight forward with many discrete componenets being used together to perform the complex functions required. This means getting hold of components to repair electrical problems is by and large still possible. However this good news is more than wiped out by the fact that it is now near impossible to get hold of mechanical parts such as pressure rollers, capstan motors and video heads. For the most part it is a case of having to break up several machines to get one working. Video heads for V2000 machines are now rare and extremely difficult to obtain.


N.V. Philips, the Holland -based electronics giant, has introduced. a completely new home videocassette recording system for the European market and says it will have a U.S. (NTSC color standard) version in about a year. The Video 2000 system was designed for flexibility in adapting to new developments, such as metal tape, stereo sound and special control signals. The cassette, about the same size as a VHS type, contains half-inch tape and can record for up to eight hours on two quarter - inch helically scanned tracks. Like Philips' audio cassette, it is turned over after one track is recorded or played. Future recorder models obviously will have an auto -reverse fea- ture to eliminate the turn -over operation. Perhaps the most noteworthy development in the new system is the inclusion of a Dynamic Track Following circuit that uses auxiliary signals to assure that the head is properly positioned on the tape both for recording and playback for complete compatibility, and to provide clean, noiseless slow -, fast- and stop- motion. The cassette has special indexing tabs to adjust the recorder for either chrome or metal tape (the latter was  not  available.). The tape has two auxiliary signal tracks (not used in the first machines). Philips' first VCR designed for the new system has a micro -processor wireless remote -control system that not only governs the record and play functions, but tunes in broadcast channels, can locate any segment of the tape by dialing up a four -digit figure corresponding to a number on the digital tape counter, and is used to pre-select any five programs over a 16-day period for automatic recording. The system was co developed with Grundig, which is producing its own VCR models. it's incompatible with all other home VCR systems in use, including Philips' previous system. Magnavox, Philips subsidiary in the United States, currently sells VHS video recorders built by Matsushita of Japan. It's not yet clear whether Magnavox will offer a version of the Philips' system in this country. One possibility offered by the Video 2000 system is a compact portable VCR using one -quarter-inch tape -in effect, a single track instead of two parallel tracks. A Philips spokesman conceded that "in the system it is possible" to do this. Although such a shaved -down cassette wouldn't be compatible in size with the home recorder, conceivably an adapter could be made available to let the big machine scan the mini-cassettes.

This system is amazingly sophisticated for 1980, and has only appeared on modern VHS decks in the last few years. But problems with the development of this system was one of the reasons that the launch of V2000 was late.
By the time the format was finally on sale, the machines seemed expensive and lacking in features when compared to the VHS and Betamax machines of the era. Video 2000 never gained the popularity it deserved, and in 1985 the format was officially abandoned, becoming the first casualty of the Format War.




Grundig AG is (WAS) a German manufacturer of consumer electronics for home entertainment which transferred to Turkish control in the period 2004-2007. Established in 1945 in Nuremberg, Germany by Max Grundig the company changed hands several times before becoming part of the Turkish Koç Holding group. In 2007, after buying control of the Grundig brand, Koc renamed its Beko Elektronik white goods and consumer electronics division Grundig Elektronik A.Ş., which has decided to merge with Arçelik A.Ş. as declared on February 27, 2009


Max Grundig (7 May 1908 – 8 December 1989) was the founder of electronics company Grundig AG.Max Grundig is one of the leading business personalities of West German post-war society, one of the men responsible for the German “Wirtschaftswunder” (post-war economic boom).


GRUNDIG Early years

Max Grundig was born in Nuremberg on May 7, 1908. His father died early, so Max and his three sisters grew up in a home without a father. At 16, Max Grundig began to be fascinated by radio technology, which at the time was gaining in popularity. He built his first detector in the family’s apartment, which he had turned into his own laboratory. In 1930, he turned his hobby into his profession and opened a shop for radio sets in Fürth with an associate. The business prospered and soon Grundig was able to employ his sisters and buy out his associate. By 1938, he was already manufacturing 30,000 small transformers.



GRUNDIG Success after World War II

Max Grundig’s real success story began after World War II. On May 15, 1945, Grundig opened a production facility for universal transformers at Jakobinerstraße 24 in Fürth. Using machines and supplies from the war era, he established the basis for what would turn into a global company at this address. In addition to transformers, Grundig soon manufactured tube-testing devices. As manufacturing radios was subject to a licence, Grundig had the brilliant idea of developing a kit that would allow anyone to quickly build a radio on their own. This kit was sold as a “toy” called “Heinzelmann”.


Following the monetary reform, Max Grundig quickly expanded his production under the new company name “Grundig Radio-Werke GmbH” and served the expanding mass market. From 1952, his company was the biggest European manufacturer of radios and the worldwide leader in the production of audio tape recorders.



Grundig became a real pioneer in consumer electronics. From 1951, the company’s portfolio also included the production and distribution of television sets, and dictaphones were added in 1954. The company was turned into a shareholding company, the Grundig AG, in 1971. In the 1970s, the company was one of the leading companies in Germany, employing more than 38,000 people in 1979. Max Grundig had built a strong company from the ruins of the war.


GRUNDIG and the rules are changing

In the second half of the 1970s, another innovation entered the market for consumer electronics, the VCR. And with the VCR, competitors from Japan and later other countries of the Far East entered the world market. Even though the European competitors Philips and Grundig had developed the superior technology for recording video, the Japanese VHS succeeded on the market. The rules of the game changed dramatically in the field of consumer electronics. The competition for establishing the video standard proved that companies could only succeed in consumer electronics with the financial power of global corporations. In 1979, Max Grundig decided to sell some shares to his Dutch competitor Philips, and in 1984 he began the process of restructuring the ownership of the Grundig companies, which would be completed two decades later.



Max Grundig died on December 8, 1989 in Baden-Baden. The Grundig name continues to be known to this day and is now a globally recognised brand for innovative consumer electronics. Max Grundig is remembered in Germany as a dynamic entrepreneur from the post-war era.


He was married lastly to Chantal Grundig.



Early history

The history of the company began in 1930 with the establishment of a store named Fuerth, Grundig & Wurzer (RVF), which sold radios. After World War II Max Grundig recognized the need for radios in Germany, and in 1947 produced a kit, while a factory and administration centre were under construction at Fürth. In 1951 the first televisions were manufactured at the new facility with the company and the surrounding area growing rapidly. At the time Grundig was the largest radio manufacturer in Europe. Divisions in Nuremberg, Frankfurt and Karlsruhe were set up.

Grundig in Belfast

A plant was opened in 1960 to manufacture tape recorders in Belfast, Northern Ireland, the first production by Grundig outside Germany. The managing director of the plant Thomas Niedermayer, was kidnapped and later killed by the Provisional IRA in December 1973. The factory was closed with the loss of around 1000 jobs in 1980.

Philips takeover

In 1972, Grundig GmbH became Grundig AG. After this Philips began to gradually accumulate shares in the company over the course of many years, and assumed complete control in 1993. Philips resold Grundig to a Bavarian consortium in 1998 due to unsatisfactory performance.

Later history

At the end of June 2000 the company relocated its headquarters in Fürth and Nuremberg. Grundig lost €1.281 million the following year. In autumn 2002, Grundig's banks did not extend the company's lines of credit, leaving the company with an April 2003 deadline to announce insolvency. Grundig AG declared bankruptcy in 2003, selling its satellite equipment division to Thomson. In 2004 Britain's Alba plc and the Turkish Koc's Beko jointly took over Grundig Home InterMedia System, Grundig's consumer electronics division. In 2007 Alba sold its half of the business to Beko for US$50.3 million, although it retained the licence to use the Grundig brand in the UK until 2010, and in Australasia until 2012.




















...........................................The Federal Republic of Germany: Holding the Ring?

For more than thirty years after the Second World War, consumer
electronics in West Germany, as elsewhere, was a growth industry.
Output growth in the industry was sustained by buoyant consumer
demand for successive generations of new or modified products,
such as radios (which had already begun to be manufactured, of
course, before the Second World War), black-and-white and then
colour television sets, hi-fi equipment.” Among the largest West
European states, West Germany had by far the strongest industry.
Even as recently as 1982, West Germany accounted for 60 per cent
of the consumer electronics production in the four biggest EEC
states. The West German industry developed a strong export
orientation--in the early 1980s as much as 60 per cent of West
German production was exported, and West Germany held a larger
share of the world marltet than any other national industry apart
from the]apanese.ltwas also technologicallyextremelyinnovative-
the first tape recorders, the PAL colour television technology, and
the technology which later permitted the development of the video
cassette recorder all originated in West Germany.

The standard-bearers of the West German consumer electronics
industry were the owner-managed firm, Grundig, and Telefunken,
which belonged to the electrical engineering conglomerate, AEG-
Telefunlten. The technological innovations for which the West
German industry became famous all stemmed from the laboratories
of Telefunlten, which, in the 19605, still constituted one of AEG’s
most profitable divisions. Telefunlcen and Grundig together prob-
ably accounted for around one-third of employment in the German
Industry in the mid-1970s. Both had extensive foreign production
facilities. At the same time, compared with the other EEC states,
there was still a relatively large number of small and medium-sized
consumer electronics firms in Germany. Besides Grundig and
Telefunken, the biggest were Blaupunkt, a subsidiary of Bosch, the
automobile components manufacturer, Siemens, and the sub-
sidiaries of the ITT-owned firm, SEL. Up until the late 1970s, there
was relatively little foreign-owned manufacturing capacity in the
West German consumer electronics industry.

GOVERNMENTS, MARKETS, AND REGULATION
During the 1970s, this picture of a strong West German
consumer electronics industry began slowly to change and, by the end of the 19705, colour television manufacture no longer offered a guarantee for the continued prosperity or even survival of the German industry. The market for colour television sets was increasingly saturated——by 1978 56 per cent of all households in
West Germany had a colour television set and 93 per cent of all households possessed a television set of some kind.2° From 1978 onwards, the West German market for colour television sets began
to contract. Moreover, the PAL patents began to expire around
1980 and the West German firms then became exposed to more
intense competition on the (declining) domestic market.

The West German firms’ best chances for maintaining or
expanding output and profitability lay in their transition to the
manufacture of a new generation of consumer electronics products,
that of the video cassette recorder (VCR). Between 1978 and 1983,
the West German market for VCRs expanded more than tenfold, so
that, by the latter year, VCRs accounted for over a fifth of the
overall consumer electronics market.“ However, in this product
segment, Grundig was the only West German firm which, in
conjunction with Philips, managed to establish a foothold, while
the other firms opted to assemble and/or sell VCRs manufactured
according to one or the other of the two Japanese video
technologies. By 1981, the West German VCR market was more
tightly in the grip of Japanese firms than any other segment of the
market. More than any other, this development accounted for the
growing crisis of the West German consumer electronics industry in
the early 1980s. The West German market stagnated, production
declined as foreign firms conquered a growing share of the
domestic market and this trend was not offset by an expansion of
exports, production processes were rationalized to try to cut costs
as prices fell, employment contracted,” and more and more plants
were either shut down or—more frequently——taken over.

The relationship between the state and the consumer electronics industry in the long post-war economic ‘boom’ was of the ‘arm’s length’ kind which corresponded to the West German philosophy
of the ‘social market economy’. The state's role was confined largely to ‘holding the ring’ for the firms and trying to ensure by means of competition policy that mergers and take-overs did not enable any single firm or group of firms to achieve a position of market domination and suspend the ‘free play of market forces’.

The implementation of competition policy was the responsibility of the Federal Cartel Office (FCO), which must be informed of any planned mergers or take-overs if the two firms each have a turnover
exceeding 1 DM billion or one of them has a turnover of more than
2 DM billion. The FCC must reject any proposed merger which, in
its view, would lead to the emergence of a, or strengthen any
existing, position of market domination.“

Decisions of the FCO may be contested in the Courts, and firms
whose merger or take-over plans have been rejected by the Cartel
Office may appeal for permission to proceed with their plans to the
Federal Economics Minister. He is empowered by law to grant such
permission when it is justified by an ‘overriding public interest’ or
‘macroeconomic benefits’, which may relate to competitiveness on
export markets, employment, and defence or energy policy.”
However, the state had no positive strategy for the consumer
electronics industry and industry, for its part, appeared to have no
demands on the state, other than that, through its macroeconomic
policies, it should provide a favourable business environment. This
situation changed only when, as from the late 1970s onwards, the
Japanese export offensive in consumer electronics plunged the West
German industry into an even deeper crisis.

The Politics of European Restructuring
The burgeoning crisis of not only the West German, but also the
other national consumer electronics industries in the EC in the
early 1980s prompted pleas from the firms (and also organized
labour) for protective intervention by the state——by the European
Community as well as by its respective national Member States.
The partial ‘Europeanization’ of consumer electronics politics
reflected the strategies chosen and pursued by the major European
firms to try to counter, or avoid, the Japanese challenge. These
strategies contained two major elements:  measures of at least
temporary protection against Japanese imports to give the firms
breathing space to build up or modernize their production
capacities and improve their competitiveness uis-ci-uis the Japanese
and partly also to put pressure on the Japanese to establish
production facilities in Europe and produce under the same
conditions as the European firms and (b), through mergers, take-
overs, and co-operation agreements, to regroup forces with the aim
of achieving similar economies of scale to those enjoyed by the most
powerful Japanese firms. The first element of these strategies
implicated the European Community in so far as it is responsible
for the trade policies of its Member States. The second element did
not necessarily involve the European Community, but had a Euro-
pean dimension to the extent that most of the take-overs and mergers
envisaged in the restructuring of the industry involved firms from
two or more of the EEC Member States, including the French state-
owned Thomson (see above). As this ‘regrouping of the forces’ of
the European consumer electronics industry was to unfold at first
largely on the West German market, the firms could only
implement their strategies once they had obtained the all-clear of
the FCO or, failing that, of the Federal Economics Ministry.

The Politics of Video Recorder Trade between japan and the EEC:

The Dutch-based multinational conglomerate, Philips, 
was the first
firm in the world to bring a VCR on to the market. Between 1972
and 1975, it had no competitors at all in VCR manufacture and, as
late as 1977, it split up the European market with Grundig, with
which Philips developed the V2000 VCR which came on to the
market in 1980. By this time, the Japanese consumer electronics
firms had already built up massive VCR production capacities and
had cornered first their own market and then, unchallenged by the
European firms, the American as well. With the advantage of much
greater economies of scale, they were able to manufacture and offer
VCRs more cheaply than Philips and Grundig when the VCR
market did eventually ‘take off‘ in Western Europe. German
imports of VCRs, for example, increased almost eightfold between
1978 and 1981.2

The immediate background to the calls for protection against
imported Japanese VCRs by European VCR manufacturing firms
was formed by massive cuts in prices for Japanese VCRs, as a
consequence of which, in 1982, the market share held by the V2000
VCR manufactured by Philips and Grundig declined sharply.”
Losses incurred in VCR manufacture led to a dramatic worsening
of Grundig’s financial position. In November 1982 Philips and
Grundig announced that they were considering taking a dumping
case against the Japanese to the European Commission. The case,
which was later withdrawn, can be seen as the first move in a
political campaign designed to secure controls or restraints on
Japanese VCR exports to the EEC states. This campaign was
pursued at the national and European levels, both through the
national and European trade associations for consumer electronics
firms and particularly through direct intervention by the firms at
the national governments and the European Commission. However,
the European firms, many of whom had licensing agreements with
the Japanese, were far from being united behind it.

Philips, seconded by its VCR partner, Grundig, was the ‘real
protagonist’ of protectionist measures against Japanese VCRs. In
pressing their case on EEC member states and the European
Commission, they emphasized the unfair trading practices of the
Japanese in building up production capacities which could meet the
entire world demand for VCRs (‘laser-beaming’), and the threats
which the Japanese export offensive posed to jobs in Western
Europe and to the maintenance of the firms’ R. 8: D. capacity and
technological know-how. Above all, however, was the threat which
the crisis in VCR trade and the consumer electronics industry
generally posed to the survival of a European microelectronic
components industry, over half of whose output, according to
Grundig, was absorbed in consumer electronics products.”

These arguments found by all accounts a very receptive audience at the European Commission, where, by common consent of German participants in the policy-formation process, Philips wields great political influence. By all accounts, Philips‘s pressure was also responsible for the conversion to the protectionist camp of the Dutch Government, which hitherto had been a bastion of free  trade philosophy within the EEC. By imposing unilateral import controls through the channelling of imported VCRs through the customs depot at Poitiers (see above), the French Government had already staked out its position on VCR trade with Japan. It presumably
required no convincing by Philips and Grundig on the issue,
although it is interesting to speculate over the extent to which its
stance also reflected the preferences of Thomson which in the past
had been the ‘chief of the protectionists’ in the European
industry.”

With the Dutch Government having been shifted into the
protectionist camp by Philips, the greatest resistance to the
imposition of some form of import controls on Japanese VCRs

could have been expected to come from the West German
Government. Along with the Danish and (hitherto) the Dutch
Governments, the West German Government had generally been
the stoutest defender of free trade among the EEC Member States.
The Federal Economics Ministry’s antipathy towards import
controls may in fact have had some impact on the form of
protection ultimately agreed by the EEC Council of Ministers,
which was a ‘voluntary self-restraint agreement’ with japan.
However, even such self-restraint agreements had in the past been
vetoed by West Germany in the Council. The West German
Government’s abstention in the vote on the agreement in the
Council of Ministers signified if not a radical, then none the less a
significant, modification of its past trade policy.

Within the Bonn Economics Ministry, the section for the
electrical engineering industry-—characteristically—had the most
receptive attitude to the V2000 firms’ case. Elsewhere in the
Ministry, in the trade and European policy and policy principles
divisions and at the summit, the Ministry’s traditional policy in
favour of free trade was given up much more reluctantly. The
Ministry did not oppose the voluntary restraint agreement after it
had been negotiated, but it may be questioned whether the
Ministry’s acquiescence in the agreement was motivated solely by its
feeling of impotence vis-£1-vis the united will of the other Member
States. Abstaining on the vote in the Council of Ministers enabled
the V2000 protectionist lobby to reap its benefits without the West
German Government being held responsible for its implementation.
The Govemment’s abstention may equally have been the result of
the pressure exerted on the Economics Ministry by the V2000
firms, particularly Philips and Grundig, both of which engaged in
bilateral talks with the Ministry, and from the consumer electronics
sub-association of the electrical engineering trade association of the
ZVEI (Zentralverband der Elektrotechnischen lndustrie), in which
a majority of the member firms had sided with Philips and Grundig.
The Ministry, by its own admission, did not listen as closely to the
firms which were simply marketing Japanese VCRs as to those
which actually manufactured VCRs in Europe: ‘we were interested
in increasing the local content (of VCRs) to preserve jobs.’

The success of the V2000 firms in obtaining any agreement at all
from the Japanese to restrain their exports of VCRs to the EEC
does not mean that they were happy with all aspects of the
agreement, least of all with its contents concerning VCR prices and
concrete quotas which were agreed with the Japanese. As the
market subsequently expanded less rapidly than the European
Commission had anticipated, the quota allocated to Japanese
imports (including the ‘kits’ assembled by European licensees of
Japanese firms) amounted to a larger share of the market than
expected and the European VCR manufacturers did not sell as
many VCRs as the agreement provided. Ironically, within a year of
the adoption of the agreement, both Philips and Grundig announced
that they were beginning to manufacture VCRs according to the
Japanese VHS technology and by the time the agreement had
expired (to be superceded by increased tariffs for VCRs) in 1985,
the two firms had stopped manufacturing V2000 VCRs altogether.

The Politics of Transnational European Mergers and Take-overs
The wave of merger and take-over activity in the European
consumer electronics industry which peaked around 1982 and
1983 had begun in West Gemany in the late 1970s, when Thomson
swallowed up several of the smaller West German firms- Normende,
Dual, and Saba ...and Philips, apparently reacting to the threat it
perceived Thomson as posing to its West German interests, bought
a 24.5 per cent shareholding in Grundig.3° The frenzied series of
successful and unsuccessful merger and take-over bids which
unfolded in 1982 and 1983 is inseparable from the growing crisis of
the European industry and the major European firms’ perceptions
as to how they could restructure in order to survive in the face of
Japanese competition.

The first candidate which emerged for take-over on the West
German market was Telefunken, for which AEG, itself in desperate
financial straits, had been seeking a buyer since the late 1970s.
Telefunken’s heavy indebtedness, which was largely a consequence
of losses it had incurred in its foreign operations, posed a
formidable obstacle to its disposal, however, and first Thomson,
which had bought AEG’s tube factory, and then Grundig, baulked
at taking it on as long as AEG had not paid off its debts. While talks
on Telefunken’s possible sale to Grundig were still going on in
1982, Grundig’s own financial position was quickly worsening as a
result primarily of its mounting losses in VCR manufacture.

Grundig confessed publicly that if the firm carried on five more
years as it was doing, it would ‘go under like AEG’, which, in
summer 1982, had become insolvent. Grundig intensified his search
for stronger partners, which he had apparently begun by talking
with Siemens in 1981. In late 1982, at the same time as Grundig
and Philips were pressing for curbs on Japanese VCR imports,
Grundig floated the idea of creating, based around Grundig, a
European consumer electronics ‘superfirm’ involving Philips,
Thomson, Bosch, Siemens, SEL, and Telefunken. Most of the
prospective participants in such a venture were unenthusiastic
about Grundig’s plans, however, and the outcome of Grundig’s
search for a partner or partners to secure its survival was that
Thomson offered to buy a 75.5 per cent shareholding in the firm.

Political opinion in West Germany was overwhelmingly, if not
indeed uniformly, hostile to Thomson’s plan to take over Grundig.
The political difficulties which Thomson and Grundig faced in
securing special ministerial permission for their deal were exacer-
bated by the probability of job losses given a rapidly deteriorating
labour market situation, and by the fact that, as late as 1982 and
early 1983, an election campaign was in progress. Moreover, the
Federal Economics Ministry was apparently concerned that, if
Thomson took over Grundig, the West German Government would
have been exposed to the danger of trade policy blackmail from the
French Government, which could then have demanded increased
protection for the European consumer electronics industry as the
price for Thomson not running down employment at Grundig (and
in other West German subsidiaries).

The decisive obstacle to Thomson's taking over Grundig,
however, lay not with the position of the Federal Economics
Ministry (or that of the Government or the FCO or the Deutsche
Bank), but rather in that of Grundig’s minority shareholder,

Philips. Against expectations, the FCO announced that it would
approve the take-over, but only provided that Philips gave up its
shareholding in Grundig and that Grundig also abandoned its plans
to assume control of Telefunken. As talks on Grundig’s plan to take
over Telefunken had already been suspended, the latter condition
posed no problem to Thomson’s taking over Grundig.

Once it had been put on the spot by the FCO's decision, Philips
was forced to leave its cover and declare that it would not withdraw
from Grundig. Apart from its general concern at being confronted
with an equally strong competitor on the European consumer
electronics market, Philips’s motives in thwarting Thomson's take-
over of Grundig were probably twofold. First, Thomson evidently
did not want to commit itself to continue manufacturing VCRs
according to the Philips—-Grundig V2000 technology, but wanted
rather to keep the Japanese (VHS) option open and, according to its
public declarations, to work with Grundig on the development of a
new generation of VCRs. Secondly, Philips was, ahead of Siemens,
Grundig’s biggest components supplier, with annual sales to
Grundig worth several hundred million Deutschmarks. lf Thomson
had taken over Grundig, this trade would have been lost.

A sequel to the failure of Thomson's bid for Grundig was that in
1984, with bank assistance, Philips assumed managerial control of
Grundig. Thus, at the end of this phase of the restructuring
programme of the European consumer electronics industry, two
main groups have emerged, one centred around Philips, the other
around Thomson, and Blaupunkt is the only significant firm in
West Germany left under West German control. But a common
European response (i.e. one involving Philips and Thomson) to the
Japanese challenge of the kind which Max Grundig
had envisaged
in 1982 had not come about, and may be less likely given
Thomson’s acquisitions in Britain and the US which make it a much
more powerful competitor to Philips. But the acceleration in
Japanese and also Korean inward investment in Europe in 1986-7,
especially in VCR production where there are now a total of twenty
Far Eastern-owned plants, suggests that the process of restructuring
within Europe is far from complete.

The recent experience of the European consumer electronics
industry points to the critical role of the framework and instruments
of regulation in trying to account for the different responses of the
various national industries and governments to the challenges
posed by growing Japanese competitive strength and technological
leadership. At one extreme is self-regulation by individual firms,
where governments eschew any attempt to determine the responses
which particular firms make to changing market conditions, whilst
adopting policy regimes such as tax and tariff structures and
openness to inward investment which critically affect the conditions
under which self-regulation takes place." At the other extreme is
regulation by government intervention at the level of firm strategy,
where governments seek specific policy outcomes by offering
specific forms of inducement to selected firms and denying them to
others.”

HISTORY OF GRUNDIG IN GERMAN:

1930 gründet der Kaufmann und Radiobastler Max Grundig (1908-1989) den Radio-Vertrieb Fürth, Grundig & Wurzer (RVF), ein Radio-Fachgeschäft mit Werkstatt. Bald fabriziert der Betrieb auch Transformatoren und Spulen, später zudem Prüfgeräte. 1934 zahlt Grundig den Teilhaber und Freund Karl Wurzer aus. 1938 beträgt der Umsatz mehr als 1 Mio. RM. Während des Krieges fabriziert Grundig im Dorf Vach mit etwa 600 Personen, darunter vielen Ukrainerinnen, Kleintrafos, elektrische Zünder und Steuergeräte für die V-Raketen. Das Grundig-Vermögen schätzt man am Kriegsende auf 17,5 Mio. RM

Ab 18. Mai 1945 kann Grundig wieder in Fürth produzieren. Er lässt Transformatoren wickeln, Reparaturen ausführen und stellt kurz darauf das Röhrenprüfgerät «Tubatest» und das Fehler-Suchgerät «Novatest» her. Ab 15.1.46 lässt Grundig den externen Ing. Hans Eckstein, den früheren Konstrukteur bei Lumophon, einen Einkreiser-Baukasten mit späterem Namen «Heinzelmann» entwickeln. Anfang 1946 beschäftigt Grundig ca. 100 Personen. Ab Oktober 1946 läuft die Produktion des «Heinzelmann» und die Firma stellt bis Ende 1946 391 Baukästen her. Die vierseitige Geschichte dazu findet sich in der Zeitschrift «rft» 1991, ab Seite 421. Grundig hat auch 1947 grossen Erfolg, denn ein Baukasten ist ohne Bezugsschein erhältlich. Das erste Modell (A) ist ein Zwei-Röhren-Allstromempfänger mit Wehrmachtsröhren RV12P2000. Die Produktion findet bald mit 120 Mitarbeitern auf 400 qm statt. Anfang 1947 folgt Modell W [634701]. Der Baukasten erreicht 1948 eine Stückzahl von 39'256 [DRM].

Am 15.3.47 beginnt Grundig mit dem Bau eines modernen Fabrikgebäudes auf 8000 qm Fläche. Mitte 1948 kann die Firma den Superhet «Weltklang» anbieten; er findet ebenfalls guten Absatz. 400 Personen arbeiten auf 3000 qm Fläche. Im Juli 1948 benennt Grundig seine Firma in Grundig-Radiowerke GmbH um. Jetzt arbeiten 650 Personen im Betrieb. 1949 kommt als erstes deutsches Nachkriegs-Koffergerät der «Grundig-Boy» auf den Markt. Die Firma bringt eine Neukonstruktion des «Heinzelmann» auf den Markt. Zudem entsteht der Vier-Kreis-Super «Weltklang 268GW». Im Mai 1949 erreicht der Betrieb in der Bizone (eigentlich Trizone!) 20 % Marktanteil [664905]. Die Bizone ist der Zusammenschluss der amerikan. und brit. Besatzungszone von 1947 bis 8.4.49, die sich ab dann durch den Anschluss der frz. Besatzungszone zur Trizone erweitert.

Am 16. Mai 1951 übernimmt Grundig die Lumophon-Werke (ebenfalls in Fürth) für den Betrag von 1,7 Mio. DM. Im gleichen Jahr entstehen erste Grundig-Tonbandgeräte. 1952 beginnt die Produktion von Fernsehgeräten. Das Unternehmen beschäftigt nun 6000 Personen und feiert am 12. Mai 1952 den millionsten Rundfunkempfänger. Die Baureihe von 1952/53 ist erstmals technisch und formal einheitlich gestaltet, wobei Grundig die prinzipielle Form bis 1956/57 beibehält. Ausser Typ 810 mit Flankengleichrichter enthalten alle Geräte einen integrierten FM-Teil mit Ratiodetektor. 1955 bezeichnet sich Grundig als den grössten Tonbandgeräte-Hersteller der Welt. 1956 kauft er das Telefunken-Rundfunkgerätewerk Dachau [639071]. 1959 besteht Grundig aus sieben Werken, zwei Tochtergesellschaften plus einer Neugründung in den USA. 1964 übernimmt Grundig die Tonfunk-Werke, Karlsruhe. 1969 beteiligt sich Grundig mehrheitlich an der Kaiser-Radio in Kenzingen. Max Grundig ist seit 1970 gesundheitlich angeschlagen.

1978 gehören 31 Werke, 9 Niederlassungen mit 20 Filialen und drei Werksvertretungen, 8 Vertriebs- und 200 Exportvertretungen zur Grundig AG. 1979 beschäftigt das Unternehmen 38'000 Personen; der Umsatz liegt bei 3 Mrd. DM. Ein Hauptstandort ist Nürnberg. Grundig muss sich jedoch einer Umstrukturierung unterziehen und Philips erhält 1979 eine Beteiligung von rund 25 %. 1980/81 muss Grundig einen Verlust von 187 Mio. DM hinnehmen. Zusätzlich scheitert das Gerät «VIDEO 2000» finanziell.

Eine detaillierte Firmengeschichte enthält das 1983 erschienene Buch: «Sieben Tage im Leben des Max Grundig» von Egon Fein.

Allerdings lässt sich aus [481, Saba] auch wenig Schmeichelhaftes über das Machtstreben von Max Grundig erfahren.

1984 erhöht Philips die Beteiligung um 7 % und übernimmt die unternehmerische Verantwortung. 1986/87 kann das Unternehmen mit noch 19'500 Mitarbeitern wieder schwarze Zahlen schreiben. 1987/88 beschäftigt Grundig noch 18'700 Personen bei einem Umsatz von

3,2 Mrd. DM, wovon 90 % auf die Unterhaltungselektronik entfallen. In diesem Geschäftsjahr verlassen 2 Mio. Farbfernsehgeräte und 750'000 Videorecorder die Bänder. Max Grundig stirbt im Dezember 1989 [639071] - letztlich hatte er nicht das vierblättrige, sondern das dreiblättrige Kleeblatt als Firmenemblem gewählt.

Philips hat das Unternehmen vollständig übernommen. Mitte 90er Jahre beschäftigt Grundig noch 8000 Personen. Eine detaillierte Firmengeschichte findet sich in «kleeblatt radio» ab 5/93 des Förderverein des Rundfunkmuseums der Stadt Fürth eV.

1998 verkaufte Philips das Unternehmen an ein Konsortium unter Führung von Anton Kathrein von den Kathrein-Werken. Im Jahre 2001 wurde bei einem Umsatz von 1,2 Milliarden Euro ein Verlust von 150 Millionen Euro erwirtschaftet. Daher verlängerten die Banken im Herbst 2002 die Kreditlinien nicht mehr, was zur Insolvenz im April 2003 führte. In der Folgezeit wurden gewinnbringende Sparten (wie z.B. Bürogeräte, Autoradios) aus dem Konzern herausgelöst und einzeln verkauft. Verlustreiche Sparten wurden stillgelegt und die Mitarbeiter entlassen. Heute erhältliche Neuware von Grundig ist kaum noch "made in Germany".



GRUNDIG SYSTEM 2000 VIDEO 2X4 PLUS CHASSIS DECK AND UNITS INTERNAL VIEW.


























































































































































































































































































































































GRUNDIG SYSTEM 2000  VIDEO 2X4 PLUS  Arrangement for the recording and reproduction of wide frequency band video signal:
 

 Method of recording and reproduction of wide frequency band video signals onto or from a magnetizable recording carrier, carried out by the following means: means for separating of the video frequency signals into first and second signals of lower and upper frequency range respectively, for converting said second signal into a third signal the frequency range of which equaling that of said first signal, for frequency modulating a carrier wave frequency by said first and third signals and for recording the frequency modulated signals by means of a twin head, for reproducing the recorded signals by means of a twin head and for amplifying, limiting and demodulating the recorded signals and reconverting the third signal into its original frequency range and combining the so reconverted third signal and said first signal.

 1. An apparatus for the recording and reproducing of wide frequency band color video signals onto or from two adjacent tracks of a magnetizable recording carrier, whereat the color video signal to be recorded is separated into a lower and upper frequency range, said lower frequency range frequency modulating a carrier wave, said apparatus further comprising:
a. means for converting said upper frequency range into said lower frequency range;
b. means for frequency modulating said carrier wave by said converted upper frequency range;
c. twin head means for simultaneously recording both said frequency modulated signals; and,
d. means for reproducing the recorded signals encoding the twin head, means for amplifying, limiting and demodulating the recorded signals and for reconverting the converted upper frequency range into its original frequency range and for combining the reconverted signal and the lower frequency range signal.


2. The apparatus in accordance with claim 1 wherein the mixing frequency used for the converting and reconverting of the upper frequency range is an integral multiple of the line frequency.

3. The apparatus in accordance with claim 1 wherein the individual recording heads of the twin head have azimuth-angles which are different from zero and are equal in value but oppositely inclined.

Description:
BACKGROUND OF THE INVENTION
In view of the limited band width of the frequency band of simple tape video recording and reproducing apparatuses for home use a color television signal can be recorded only with losses in quality and after a considerable transformation of the original video signals.
For example, in a widely used European system of recording and reproduction, the brightness and chrominance signals are separated from each other. A carrier frequency located at about 4 MHz is frequency-modulated with the brightness signal, which is limited to 2.7 MHz. The chrominance signal is moved out of its original frequency position into a new frequency range, which is located lower than that of the lower side bands of the frequency-modulated brightness signals. Thereafter the frequency-converted color signals are added and recorded.
Japanese systems, which also were developed especially for home use, use essentially the same principle. Both systems suffer from serious disadvantages. The procedure is intricate and includes many possibilities for error, if the luminance and chrominance signals are separated, processed in a different manner and then put together again. The frequency band width of the brightness signal must be narrowed. Since a portion of the tape recorded information is contained in the amplitude, the advantage of frequency modulation largely is lost. The track width cannot be reduced below a certain minimum figure and the color information is recorded at a relatively large wave length. The danger of cross-talk and especially cross-color disturbances between neighboring tracks exists just where it is most conspicuous. This can be avoided by the provision of guard bands between the tracks, but because the guard bands do not carry any information a large amount of tape is needed.
If guard bands between adjacent tracks are omitted, adjacent tracks are recorded and read at different azimuth angles, and the polarity of the color information is changed from line to line, which requires not only additional electronics but requires a radically different lay-out of the whole electronic circuit, depending upon whether the apparatus is to be used for NTSC, PAL or SECAM.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a recording and reproducing arrangement for wide frequency band video signals onto or from a magnetizable carrier, which avoids the above described faults and which especially permits the recording of the full video frequency band with small and inexpensive apparatuses and without additional tape consumption at full utilization of the advantages of frequency modulation. The color television system (NTSC, PAL or SECAM) does not influence the recording, so that the same apparatus can be used for all systems, except of course, for different power supply frequencies.
The inventive combination is new and brings out a surprising result. For example, the frequency transformation of a portion of the color television signal is known. U.S. Pat. No. 3,234,323 discloses the method of modulation onto a carrier frequency for the brightness and the color and to record each in parallel tracks. German Pat. No. 1,935,109 discloses means to record on adjacent tracks without leaving space in between, but with different azimuth angles. In comparison, none of the known arrangements permits recording of the full color television signal frequency band with small and inexpensive apparatus independently of the color transmission system and with full utilization of the advantages of frequency modulation and without additional tape consumption and loss of quality.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1 and 2 taken together provide a diagrammatic showing of the subject invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT
An embodiment of the in
vention is shown in the FIGS. in which for example the mean track spacing amounts to 187 μm, the width of a track itself is 130 μm, the frequency modulation deviation ranges from 3.1 MHz to 4.5 MHz, and at this condition video signals up to 2.7 MHz with 10 dB loss can be recorded. If now, according to the invention, the mean track spacing is divided into two tracks each of 93.5 μm track width lying parallel and adjacent to one another without interspace, and if, from the signal which is introduced at connection 1, a lower frequency range extending up to 2.7 MHz is separated by a low-pass filter 2, then this lower frequency range may be frequency modulated in a modulator 3 and after appropriate amplification in an amplifier 4 be recorded by a magnetic transducer head 5, just as well as in the aforementioned original state. Simultaneously, the line synchron impulses are separated at 6 and an upper frequency range of the color television signal from 2.7 MHz to 5.5 MHz is made available over the high-pass filter 7. The frequency of the output voltage of a voltage controlled oscillator (VCO) 8 with a nominal frequency of about 2.6 MHz is divided in a divider 9 by, for example, 166 and compared with the line synchron impulses in a phase comparator 10; the difference signal synchronizes the oscillator 8 to a frequency which is an integral multiple of the line frequency. The mixing of the output voltages of the oscillator 8 and of the high-pass filter 7 in a mixing unit 11 and the limiting by a low-pass filter 12, whose cut-off frequency may lie a little higher than those of 2, effects a transposition of the upper video frequencies into the same frequency range as is behind the low-pass filter 2; the signals applied to the frequency modulators 3 and 13, may also be treated in the same manner, especially with respect to a possible pre-emphasis and the modulation itself; the last is indicated by a common carrier wave oscillator 16. The signal, which is frequency modulated in 13, is applied by way of an amplifier 14 to a further magnetic head 15, which is preferably combined with the magnetic head 5 to form a twin head, recording simultaneously with head 5 parallel tracks without any interspace. Technologically, the amplifiers 4 and 14 and the heads 5 and 15 are of equal design; as later will be explained, only the azimuth angles of the gaps of heads 5 and 15 differ from each other.
In the play-back apparatus according to
FIG. 2, the amplifiers 17, the limiters 18 and the demodulators 19, which are following the heads 5 and 15, are once more built wholly alike; the blocks 6, 8, 9, 10 and 11 are the same for recording, according to FIG. 1 and for reproducing, according to FIG. 2. The output voltage of the mixing unit 11 is taken through a band-pass filter 20, which filters out the upper side band of the mixing product, and transfers it to an adder stage 21, which also receives the demodulated signals read by head 5. If necessary, there may be inserted frequency-response corrections at suitable places, deemphasis on offset compensators, and this in both channels.
The synchronization to the line frequency of the mixing frequency of the oscillator 8, which is required for the frequency shift, proves to be especially advantageous, because by this, large time basis deviations are compensated for. The upper cut-off frequency of the demodulated signal, which head 5 picks up, is thus shifted exactly as much as the lower cut-off frequency behind the band-pass filter 20, so that the crossover positions between the two ranges of video frequencies are not changed relative to each other.
As a result, compared with the original shape, the upper useful video frequency can be doubled without loss of playing time or quality, and this, without having to extract the chrominance signal out of the color television signal and without having information carried by the amplitude of the magnetization, which exists at the tape. For this latter reason, the width of the tracks may be further decreased, and in this way, the playing time can be again increased.
Compared with the aforementioned Japanese system, it is true that this system also uses the advantage of abutting tracks. But instead of this, another advantage is obtained in that the very complicated and from television system to television system very different processing of the color signal is avoided; also the disadvantage of a chrominance sub-carrier transposed into a low frequency range, namely the therewith associated danger of cross-talk from track to track is very greatly reduced. For example: the converted chrominance sub-carrier frequency is normally of the order of 600 kHz. If there is a track width without interspace of 55 μm, a head to tape speed of 6000 mm/s and an azimuth-angle of 8° Which is contrarotating from track to track (which means 16° effective for each head), and the scanning head deviates by 9% of the track width out of its track, the cross-talk results in a signal to noise ratio of 20.4 dB. This ratio is too small and must therefore be further diminished by complicated and expensive electronic means with the help of comb filters. According to the invention all recorded frequencies are located at 4 MHz; under otherwise equal circumstances the cross-talk ratio now amounts to 45 dB, which requires no additional distortion suppressing means.
The invention is not limited to the specific oblique track recording, but can also be used at the transverse track, or the longitudinal track methods using rotating magnetic heads. The advantages derived from the invention is independent of the shape (form) of the record carrier and of the track.




GRUNDIG SYSTEM 2000  VIDEO 2X4-PLUS    VIDEO2000 Reversable video cassette:

A reversible video cassette for portable video devices is described, said cassette having two housing halves (7, 8), mounted displaceably for changing the distance between the winding spools. The housing halves are connected to each other by two flat guide parts (13, 14) arranged in parallel. The two housing halves are releasably locked by two catch hooks (17, 18) associated with the guide parts.


VIDEO -WENDEKASSETTE PATENTANSPR·UCHE

1. Video-Wendekassette in Form eines im wesentlichen quaderf·ormigen K·orpers mit zwei darin drehbar gelagerten Wickelspulen f·ur das Magnetband und einer an einer schmalen L·angsfl·ache vorgesehenen ·Offnung mit teilweise zur·uckgesetzter Geh·ausewand zur freiliegenden Magnetbandf·uhrung, wobei die Kassette vorzugsweise aus zwei verriegelbaren im wesentlichen geschlossenen Halbteilen besteht, die zur Ver·anderung des Wickelspulenabstandes sowie zur Vergr·osserung der freiliegenden Magnetbandl·ange verschiebbar gelagert sind, d a d u r c h g e k e n n z e i c h n e t , dass die Verbindung der verschiebbaren Kassetten
-Halbteile (7,8) durch zwei flache F·uhrungsteile (13, 14) erfolgt, die in parallel angeordneten F·uhrungsnuten (19, 20), die sich in den beiden ·ausseren schmalen L·angsfl·achen (15, 16) der Geh·ausehalbteile befinden, eingelegt sind, und die Verriegelung der beiden Halbteile durch zwei seitenversetzt den F·uhrungsteilen zugeordnete Sperrhaken (17, 18) erfolgt.

2. Video-Wendekassette nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die F·uhrungsteile (13, 14) aus schmalen bandartigen Metallstreifen bestehen.

3. Video-Wendekassette nach den Anspr·uchen 1 und 2, d a d u r c h g e k e n n z e i c h n e t , dass die F·uhrungsteile aus antimagnetischem Federstahlband bestehen.

4. Video-Wendekassette nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der aus Kunststoff einst·uckig gefertigte Sperrhaken (17, 18) aus einem Hakenteil (22), einem Lagerauge (23) und einem Verbindungssteg (24) besteht, wobei der Verbindungssteg eine Schr·agfl·ache (27) aufweist.

5. Video-Wendekassette nach den Anspr·uchen 1 und 4, d a d u r c h g e k e n n z e i c h n e t , dass der Sperrhaken mittels einer Druckfeder (25) in einer die beiden Kassetten-Geh·ausehalbteile verriegelnden Lage gehalten wird.

6. Video-Wendekassette nach einem der Anspr·uche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t dass die Verriegelung der beiden Kassetten-Halbteile durch Eintauchen wenigstens eines Stiftes (9, 10) in die Kassette aufgehoben wird, wobei der Stift auf die Schr·agfl·ache (27) des Sperrhaken-Verbindungssteges (24) trifft und den Haken aus einem Sperrzahn (26) hebt.

7. Video-Wendekassette nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , dass f·ur jeden Sperrhaken ein Stift zur Entriegelung in die Kassette eintaucht. EMI11.1

Description:
VIDEO -WENDEKASSETTE BESCHREIBUNG Die Erfindung betrifft eine Video-Wendekassette in Form eines im wesentlichen quaderf·ormigen K·orpers mit zwei darin drehbar gelagerten Wickelspulen f·ur das Magnetband und einer an einer schmalen L·angsfl·ache vorgesehenen ·Offnung mit teilweise zur·uckgesetzter Geh·ausewand zur freiliegenden Magnetbandf·uhrung, wobei die Kassette vorzugsweise aus zwei verriegelbaren im wesentlichen geschlossenen Halbteilen besteht, die zur Ver·anderung des Wickelspulenabstandes sowie zur Vergr·osserung der freiliegenden Magnetbandl·ange verschiebbar gelagert sind.
Es sind Magnetbandkassetten bekannt, bei denen die Bandwickelspulen mit einem bestimmten Abstand nebeneinander in einem Kassettengeh·ause angeordnet und die Wickelspulen von aussen ·uber ger·ateseitig angeordnete Antriebsmittel antreibbar sind. Weiterhin sind auch Kassetten bekannt, die eine Ver·anderung des Abstandes der Band wickelspulen erm·oglichen. Derartige Kassetten finden insbesondere bei Videoger·aten Anwendung. Bei Ger·aten dieser Art werden von Seiten des Benutzers, je nach Verwendungszweck, differenzierte Anforderungen gestellt.
So wird z. B. zwischen netzabh·angigen Heimger·aten und netzunabh·angigen, also batteriebetriebenen, tragbaren Ger·aten unterschieden. Hierbei spielt insbesondere das Gewicht und die Gr·osse der unterschiedlichen Ger·ate eine erhebliche Rolle. So ist die Gr·osse des Ger·ates in erheblicher Weise von der Gr·osse der Kassette abh·angig.
Bei einem tragbaren Videoger·at, das beispielsweise die Bildaufzeichnung mit Hilfe einer Videokamera erm·oglichen soll, ist eine lange Aufnahmedauer, wie sie bei einem Heimger·at gew·unscht ist, nicht erforderlich. Dagegen spielen jedoch das Gewicht und die Gr·osse bei einem tragbaren Videoger·at eine erhebliche Rolle.
Aus den unterschiedlichen Anforderungen eines Benutzers an ein Video-Heimger·at einerseits und ein tragbares batteriebetriebenes Videoger·at andererseits ergeben sich zwangsl·aufig abweichende Kassettengr·ossen mit unterschiedlicher Spieldauer. Der naheliegende Wunsch, dass die kleinere, f·ur tragbare Videoger·ate geeignete Kassette, auch auf einem f·ur gr·ossere Kassetten eingerichtetem Heimger·at abgespielt werden soll, ist schwerlich zu realisieren.
Es ist zwar bereits eine Kassettenkonstruktion bekanntgeworden, bei der auch kleinere Kassetten in einem Video-Heimger·at f·ur gr·ossere standardisierte Kassetten abgespielt werden k·onnen, die daf·ur erforderliche Konstruktion ist jedoch recht kompliziert und damit teuer.
So werden gem·ass diesem Stand der Technik Zahnrad·ubersetzungen erforderlich, mit deren Hilfe der Bandwickelabstand ausgeglichen wird.
Ein weiteres Ausf·uhrungsbeispiel zur Anpassung einer kleineren Kassette in ein Heimger·at, das nur f·ur eine gr·ossere Kassette geeignet ist, sieht vor, dass die Wickel spulen in einer besonderen Lagereinrichtung schwenkbar gelagert sind. So k·onnen die Wickel spulen mit einem kleineren Abstand in ein kleineres Kassettengeh·ause und nach Verschwenken in ein gr·osseres Kassettengeh·ause eingesetzt werden. Eine Ausf·uhrung dieser Art ist ebenfalls aufwendig und erfordert vom Benutzer ein besonderes technisches Geschick.
Eine diese Nachteile teilweise vermeidbares Ausf·uhrungsbeispiel einer Kassette zur Ver·anderung des Wickelspulenabstandes sieht vor, die Wickel spulen in getrennten, zueinander verschiebbaren Geh·ausehalbteilen unterzubringen. Die beiden Geh·ausehalbteile werden hierbei durch einen als Hohlzylinder ausgebildeten F·uhrungsabschnitt in einer festen Bewegungsbahn gef·uhrt.
Nachteilig ist hierbei, dass die F·uhrung der beiden Geh·ausehalbteile keinerlei Anpassung der auseinander gezogenen Kassetten-Geh·ausehalbteile an die Lage des im Heimger·at ver·anderten Wickelspulenantriebs erm·oglicht.
Der Erfindung liegt die Aufgabe zugrunde, eine relativ kleine Video-Wendekassette f·ur tragbare Videoger·at zu schaffen, die mit geringem technischen Aufwand auch in einem f·ur gr·ossere standardisierte Kassetten vorgesehenem Video-Heimger·at abgespielt werden kann, wobei sich der Wickelspulenabstand in der Kassette dem Spulenantrieb im Heimger·at zwangsl·aufig anpasst.
Die L·osung dieser Aufgabe erfolgt erfindungsgem·ass durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Massnahmen.
Vorteilhafte Weiterbildungen ergeben sich aus den Unteranspr·uchen.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnungsfiguren beispielsweise erl·autert. Es zeigt: Fig. 1 eine perspektivisch dargestellte Video-Wendekassette mit abgenom mener Abdeckung und verriegelten Kassetten-Halbteilen, Fig. 2 eine perspektivisch dargestellte Video-Wendekassette nach Fig. 1 mit auseinandergezogenen Kasset ten-H
albteilen, Fig. 3 eine schematische Draufsicht auf eine Video-Wendekassette mit aus einandergezogenen Kassetten-Halb teilen nach Fig.2, wobei ein Be reich der Kassetten-Halbteile mit aufgebrochener Geh·ausewand ge zeichnet ist und Fig. 4 eine vergr·osserte Darstellung eines des f·ur die Verriegelung der Kas setten-Halbteile vorgesehenen Sperr hakens.
Die Figur 1 zeigt eine perspektivisch dargestellte Video Wendekassette 1 - kurz Kassette genannt - mit einer von der Kassette abgehommenen Abdeckung 2. Die Abdeckung ist f·ur den normalen Verwendungsfall der Kassette in einem tragbaren Videoger·at stets auf der Kassette aufgesetzt und sch·utzt das sonst freiliegende Magnetband 3. Beim Einlegen der Kassette in ein tragbares Videoger·at wird die Abdeckung automatisch seitlich abgeklappt, und das Magnetband ist f·ur den Zugriff von ger·ateseitig vorhandenen Ausziehstiften (nicht gezeichnet) freiliegend. Die Kassette 1 weist die Form eines im wesentlichen quaderf·ormigen K·orpers auf mit zwei darin drehbar gelagerten Magnetband-Wickelspulen 4, 5. An einer schmalen L·angsfl·ache der Kassette ist eine ·Offnung mit teilweise zur·uckgesetzter Geh·ausewand 6 zur freiliegenden Nagnetband- f·uhrung vorgesehen.
Die Kassette selbst besteht aus zwei im wesentlichen geschlossenen Halbteilen 7, 8. Die einzelnen Kassetten-Halbteile 7, 8 bestehen wiederum aus zwei fast vollst·andig geschlossenen Halbschalen, die zusammengeschraubt oder nach einer der sonst bekannten Verbindungsformen haltbar zusammengef·ugt sind. Beide Kassettenhalbteile 7, 8 sind verriegelbar und k·onnen durch Eindringen von zwei Stiften 9, 10 (strichpunktiert gezeichnet) in an der Kassette vorgesehenen F·uhrungsbohrungen 11, 12 gel·ost werden. Die Kassettenhalbteile sind sodann auf einen vorgesehenen Abstand auseinanderzuziehen.
In der Figur 2 ist die Kassette im auseinandergezogenen Zustand gezeichnet. Die Verbindung der beiden verschiebbaren Kassetten-Halbteile 7, 8 erfolgt ·uber zwei flache F·uhrungsteile 13, 14. Die F·uhrungsteile sind parallel und in geringem Abstand zu den ·ausseren schmalen L·angsfl·achen 15, 16 der Kassetten-Halbteile angeordnet. Die Verriegelung der Kassettenhalbteile erfolgt im geschlossenen Zustand der Kassette ·uber die den F·uhrungsseiten zugeordneten Sperrhaken 17, 18. Die beiden F·uhrungsbohrungen 11, 12 zur Entriegelung der Sperrhaken 17, 18 liegen im Teilungsbereich der beiden Kassetten-Halbteile 7, 8 und bestehen somit aus den vier Bohrungsh·alften 11', 11" und 12', 12''.
Aus der Figur 3 sind weitere Einzelheiten ·uber die Ausgestaltung der Sperrhaken und der Lagerung der F·uhrungsteile 13, 14 in den Kassetten-Halbteilen 7, 8 zu erkennen. Die F·uhrungsteile 13, 14 sind in F·uhrungsnuten 19, 20, die sich im Inneren der Kassetten-Halbteile befinden, gelagert. Um sicherzustellen, dass sich die Kassetten Halbteile 7, 8 nicht nur in Haupterstreckungsrichtung (s. waagerechte Pfeilangabe) der Kassette 1 gegeneinander verschieben lassen, sondern auch in begrenzter Weise senkrecht hierzu (s. senkrechte Pfeilangabe) ausweichen k·onnen, sind die F·uhrungsteile 13, 14 aus schmalem Federbandstahl gefertigt.
Die Bandwickelspulen 4, 5 in der ausgezogenen Kassette k·onnen sich somit der Lage der im Heimger·at befindlichen und gegen·uber dem tragbaren Videoger·at unterschiedlichen Antriebselementen voll anpassen. Zur Begrenzung der Auszugsl·ange der Kassette weisen die F·uhrungsteile 13, 14 Begrenzungsnasen 21 auf.
Die Figur 4 zeigt einen vergr·ossert gezeichneten Ausschnitt des Sperrhakens aus einem Kassetten-Halbteil.
Der Sperrhaken 18 besteht aus einem Hakenteil 22, einem Lagerauge 23 und einem Verbindungssteg 24. Eine Druckfeder 25, die auf dem Verbindungssteg des Sperrhakens aufgesetzt ist und sich im Geh·ause des Kassetten-Halbteils abst·utzt, sorgt f·ur den n·otigen Verriegelungsdruck bei zusammengeschobenen Kassetten-Halbteilen. Im verriegelten Zustand beider Halbteile 7, 8 liegt das Sperr haken-Hakenteil 22 des einen Halbteils in einertrSperr- zahn 26 des anderen Halbteils. ·Uber eine Schr·agfl·ache 27, die sich am Sperrhaken-Verbindungssteg befindet, kann ·uber das Auftreffen eines in die Kassette eintauchenden Stiftes 9, 10 die Verriegelung des Sperrhakens aufgehoben werden. Das Hakenteil 22 des Sperrhakens weist in bekannter Weise eine Anlaufschr·age auf ·Uber einen Lagerstift ist der Sperrhaken 18 im Kassetten-Halbteil drehbar gelagert.


 GRUNDIG SYSTEM 2000  VIDEO 2X4 PLUS Method and device for tracking video signals on a magnetic VIDEO2000 SYSTEM tape by detecting phase jumps:

 A method and device for maintaining an exact track when playing back video ignals, which are recorded on a magnetic tape in oblique parallel tracks with different azimuth angles.

 1. A device for adjusting the exact position of the track when replaying video signals which are recorded in oblique parallel tracks on a magnetic tape, said oblique tracks being alternately recorded and replayed by two rotating heads, the gaps of which have opposite equal azimuth angles causing phase jumps of the line frequency of the scanned video signal during track changes in case of mistracking, said device including means for detecting said phase jumps, and means for applying said phase jumps to said rotating heads to readjust the rotating video heads to the exact track position by control of the tape speed.

2. A device in accordance with claim 1 further comprising means for measuring the phase jumps of the line frequency for changes from an even numbered to an odd numbered track and for changes from an odd numbered to an even numbered track.

3. A device in accordance with claim 2 in which the phase jumps of the line frequency of the video signal with respect to a reference frequency during subsequent track changes are detected by different sample and hold circuits, the outputs of said sample and hold circuits being fed to the input of a differential amplifier to form an error signal, said error signal controlling the tape speed so as to minimize said error signal.

4. A device according to claim 2 further comprising a phase locked loop to produce the reference frequency synchronized to the line frequency of the scanned video signal, said phase locked loop containing a phase comparator, a voltage controlled oscillator and a low pass filter therebetween, said low pass filter causing the control time constant of the voltage controlled oscillator to equal at least the scanning time of one track.

5. A device according to claim 3 in which the separated line pulses from the scanned video signal are fed through gate circuits to the sample and hold circuits, and which are alternately opened for about two line intervals by pulses which are derived from the position signals of the head wheel each time a video head starts to scan a new track.

6. A device according to claim 5 in which the error signal of the differential amplifier is added to or subtracted from the rectified voltage of the tacho generator of the tape feed motor and in which by comparing the sum or difference, respectively, with a given reference voltage the rotation of the tape feed motor is controlled so as to minimize the error voltage produced by the differential amplifier.

7. A device according to claim 6 in which a low pass filter is provided at the output of the differential amplifier.


Description:
BACKGROUND OF THE INVENTION
When recording video signals in oblique parallel tracks cross-talking from track to track can be kept to a minimum if the tracks are separated by guard bands. However, such guard bands are a poor way of using the available recording face.
Another possibility for minimizing cross-talk is to record with azimuth angles which differ from track to track. In such a case the guard bands can be eliminated. However, in such a system the requirement for exactly scanning the recorded track is increased.
Methods and devices for an automatical tracking during play-back of video signals in oblique tracks are known, but were never attractive for incorporation into devices for home use. For example it has been suggested to use the time difference which occurs simultaneously with a migration as a measure of the lateral migration of the replay head from the magnetic track. This method can be accomplished by very simple circuitry but poses high demands with respect to the precision and the timely constancy of such circuits, because very small and continuously changing time intervals must be measured.
SUMMARY OF THE INVENTION
The subject invention provides a device and a method wherein an exact tracking is made possible without expensive equipment and without significant requirements for precision, durability and constancy of the circuit elements.
The invention is related to video tape recorders where the video signals are recorded in oblique parallel tracks which are alternately recorded and replayed by two rotating video heads with gaps having opposite azimuth angles. The migration of the video heads from the exact track position is determined by the phase jump which occurs during track change.
The invention is based on the realization that the sudden change of a magnitude is easier to measure than a continuous change.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 is a diagrammatic representation of two oblique tracks with the tape scanning and tape feeding directions indicated;
FIG. 2 is a schematic diagram utilizing the subject invention; and
FIG. 3 is a schematic diagram illustrating a further embodiment of the invention.
DESCRIPTION OF A PREFERRED EMBODIMENT
FIG. 1 sho

ws two oblique tracks 1 and 2. For track 1 the recording and replay gap of the magnet head is turned from the vertical position counterclockwise through angle α and for track 2 in a clockwise direction through an equal angle α . If during replay the heads are displaced from the nominal position 3, 4 into position 3', 4' by an amount h perpendicular to the track direction, an additional phase change occurs in addition to the reduction of the signal to noise ratio. With the scanning and tape feeding directions and with the azimuth angles of FIG. 1 head 3' scans the video signal by an amount (h) (tan α) earlier and head 4' by an amount (h) (tan α) later than at nominal position. Therefore, during the change from track 1 to track 2 a sudden phase jump takes place corresponding to (2) (h) (tan α) rearwardly and from track 2 to track 1 forwardly. However, if heads 3 and 4 are not migrating upwardly as shown in FIG. 1 but rather downwardly, the sudden phase jump takes place with the magnitude (2) (h) (tan α) forwardly and from track 2 to track 1 rearwardly. Therefore, the magnitude of the phase jump is a measure of the magnitude of migration of the video heads from the track, while the sign of the phase jump determines the direction of migration.
In the invention the phase jump is measured at the line frequency with respect to a reference oscillation which is synchronized to the line frequency but which cannot follow sudden phase jumps or rapid frequency changes. For this purpose a voltage controlled oscillator 8 is provided as can be seen in FIG. 2 which oscillates at about double the line frequency and which is synchronized by means of phase comparator 6 and low pass filter 7 to the line pulses fed at 5 and separated from the scanned video signal. The double line frequency is chosen because of the frequency of the equalizing pulses of the vertical signal, and the low pass filter 7 prevents oscillator 8 from following immediately the occuring phase jumps.
Simultaneously, the scanned line pulses are fed to gate circuits 12 and 13 which open for a short time for about two line durations after each second head change. The necessary opening pulses are fed at 14 and 15 and are derived from the position pulse of the head wheel, so that gate 12 opens when changing from track 1 to track 2, for example, while gate 13 opens when changing from track 2 to the next track.
It is useful to transform the output voltage of oscillator 8 into a trapezoidal wave by pulse former 9 the output of which is fed as a reference to the sample and hold circuits 10 and 16 or 11, 16, respectively. The output signals of 10 and 11 are coupled to the input of differential amplifier 17.
The error signal which is generated at the output of the differential amplifier 17 may be used for making an exact track adjustment for the video heads. For example, the error signal may influence the recovery time of a monostable multivibrator 18 to which the reference pulses for the servo control circuit 20 of the tape transport motor are fed at 19. Another possibility exists in the immediate adjustment of the rotating video heads in axial direction by means of piezoceramic elements which are excited by the error signal of differential amplifier 17.
Since the maintaining of the track and the transport speed for the tape are unmistakeably correlated in accordance with the invention the reference pulses which are fed at 19 may be omitted in accordance with a further embodiment of the invention. In other words, the usual synchronous track is not necessary.
In accordance with FIG. 3, the servo control circuit of band feeding motor 21 includes tacho generator 22 which is coupled with motor 21, and the output voltage of the generator after being rectified at 23 is coupled to the input of a differential amplifier 24. The other input of differential amplifier 24 is coupled to a reference voltage 25. This control loop controls the tape feeding speed approximately to the nominal value, while the output voltage of the differential amplifier 17 which is fed into the summing element 26 provides the exact adjustment of the tape speed with respect to the exact track adjustment.
The additional low pass filter 27, 28 is only necessary for the start of the tape movement and elimates the big alternating phase jumps generated during the acceleration of the magnetic tape.



GRUNDIG SYSTEM 2000  VIDEO 2X4-PLUS    Method for dynamic track adjustment in SYSTEM VIDEO2000 video recorders:. 

 1. Method for dynamic equidistant track adjustment in magnetic helical-scan video recording with the aid of rotating magnetic video heads which are adjustable by a servosystem perpendicularly to the direction of movement, the servosystem being controlled by a control signal (burst) of a particular frequency keyed in each case at the beginning of the track and the area of reproduction of a new track being located immediately adjacent to the area of recording of the preceding track, characterized in that the order of recording and reproduction for the control signal (burst) keyed in arbitrary length, relative to the scanning movement of the magnetic video head, takes place alternatingly from track to track and, relative to the beginning of the track, offset in time and geometry from track to track.


VERFAHREN ZUR DYNAMISCHEN SPUREINSTELLUNG BEI VIDEORECORDERN PATENTANSPR·UCHE

1. Verfahren zur dynamischen ·aquidistanten Spureinstellung bei der magnetischen Schr·agspur-Videoaufzeichnung mit Hilfe von rotierenden Video-Magnetk·opfen, die senkrecht zur Bewegungsrichtung durch ein Servosystem verstellbar sind, wobei die Ansteuerung des Servosystems durch ein jeweils am Spuranfang eingetastetes Steuersignal (Burst) bestimmter Frequenz erfolgt, d a d u r c h g e k e n n z e i c h n e t dass die Reihenfolge der Aufzeichnung und Wiedergabe f·ur das in beliebiger L·ange eingetastete Steuersignal (Burst) bezogen auf die Abtastbewegung des Video Magnetkopfes von Spur zu Spur alternierend und bezogen auf den Spuranfang von Spur zu Spur zeitlich und geometrisch versetzt erfolgt, derart, dass der Wiedergabebereich einer neuen Spur dem Aufzeichnungsbereich der vorangegangenen Spur unmittelbar benachbart ist.

2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass in jeder zweiten Spur zwischen dem Aufzeichnungs- und Wiedergabebereich des Steuersignals (Burst) eine L·ucke mit der L·ange des doppelten Spurversatzes eingef·ugt ist.

3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass in jeder zweiten Spur die Summe der zeitlichen und geometrischen L·ange des Aufzeichnungs- und Wiedergabebereichs f·ur das Steuersignal (Burst) um den doppelten Spurversatz vergr·ossert wird.

Description:
VERFAHREN ZUR DYNAMISCHEN SPUREINSTELLUNG (DTF)  BEI VIDEORECORDERN BESCHREIBUNG Die Erfindung betrifft ein Verfahren, mit dem bei der magnetischen Videoauf zeichnung die ohne Zwischenraum aneinandergrenzenden, winkelentkoppelten Schr·ag spuren auf konstanten Abstand gebracht werden k·onnen.
Die Anwendung des Verfahrens setzt voraus, dass die aufzeichnenden bzw. wiedergebenden rotierenden Video Magnetk·opfe senkrecht zu ihrer Abtastrichtung gesteuert bewegbar sind. Die gesteuerte Bewegbarkeit, wie sie z.B. beim System ~Video 2000" angewendet wird, dient prim·ar der Spurfindung bei der Wiedergabe. Hierzu werden zus·atzlich zum Luminanz- und Chrominanzsignal beispielsweise vier Hilfsfrequenzen aufgezeichnet, die unterhalb des Chrominanzsignals und Luminanzsignals liegen und die bei der Wiedergabe in einer Servoschaltung derart verarbeitet werden, dass der Wiedergabekopf immer so eingestellt wird, dass er auf der gewunschten Magnetspur l·auft.
Einzelheiten ·uber dieses Verfahren sind beispielsweise aus WGrundig Technische lnforma- tonen", Heft 3/198Q, Seite 111 ff. und "Grundig Technische Infonmationen", Heft 3/1981, Seite 105 ff. zu entnehmen.
Die M·oglichkeit der Steuerung der Magnetk·opfe senkrecht zur Spurrichtung wird ausser zur Spurfindung bei der Wiedergabe aber auch bei der Aufnahme dazu benutzt, um die aufeinanderfolgenden Spuren ·aquidistant zu schreiben.
Hierzu wird ein Schwingungszug, auch Burst genannt, am jeweiligen Spuranfang mit einer weiteren Hilfsfrequenz aufgezeichnet. Unmittelbar nach der Aufzeichnung des Burstsignals, dessen Dauer nach dem Stand der Technik dem von Spur zu Spur entstehenden Spurversatz entspricht, wird der rotierende Magnetkopf auf Wiedergabe umgeschaltet und tastet das Burstsignal der vorhergehenden Spur ab. Die Amplitude des dabei gewonnenen Signals ist ein Mass f·ur den Spurabstand und kann zur Einstellung des rotierenden Magnetkopfes am Spuranfang benutzt werden, derart, dass die Spurabst·ande konstant sind.
Die Bezugsgr·osse bei diesem Regelvorgang wird beim Stand der Technik dadurch gewonnen, dass einer der beiden rotierenden Video-Magnetk·opfe auf dem Kopf rad hinsichtlich seiner Einstellung senkrecht zur Abtasteinrichtung eine feste Vorgabe erh·alt und nur der zweite Kopf so geregelt wird, dass ·aquidistante Spuren entstehen. Es ist prinzipiell aber auch m·oglich, jeweils bei Beginn einer Aufzeichnung die erste Spur mit fest eingestelltem rotierenden Video-Magnetkopf zu schreiben und anschliessend beide Video-Magnetk·opfe fortlaufend auf konstanten Spurabstand einzuregeln.
F·ur die exakte Spureinstellung darf dabei das Burstsignal nicht zu kurz sein, da mit der nachfolgenden Auswerteschaltung und auch mit der Umschaltung Aufnahme/ Wiedergabe Einschwingvorg·ange mit bestimmter Zeitdauer verbunden sind.
Wird die Aufzeichnung des Burstsignals nach de
m Stand der Technik entsprechend der Dauer des Spurversatzes gew·ahlt, dann liegen die Aufzeichnungsabschnitte in benachbarten Spuren geometrisch treppenf·ormig zueinander wie aus Figur 1 ersichtlich. Der rotierende Magnetkopf kann dann sofort nach der Aufzeichnungsperiode f·ur den Burst auf Wiedergabe umgeschaltet und nach Massgabe des aus der vorhergehenden Spur abgetasteten Burstsignals auf exakten Spurabstand eingestellt werden.
Bei geringer Spurbreite bzw. Bandgeschwindigkeit und entsprechend geringer Spurneigung kann der Spurversatz auf sehr kleine Werte absinken. Entsprechend den oben geschilderten Zusammenh·angen wird dann nach dem Stand der Technik die Dauer des Burstsignals ebenfalls auf einen geringen Wert reduziert. Es besteht dann die Gefahr, dass dieses zeitlich verk·urzte Burstsignal mit R·ucksicht auf die mit der Kopfregelung verbundenen Einschwing- und Urnschaltvorg·ange f·ur eine st·orsichere Regelung nicht mehr ausreicht.
Man k·onnte daran denken, das Burstsignal zeitlich ·uber den Spur versatz hinaus zu verl·angern, um wieder eine sichere Auswertung zu erreichen. Dann aber wandert die geometrische und zeitliche Position des Burstsignals von Spur zu Spur immer weiter auf der Aufzeichnungsspur voran und w·urde schliesslich den Videosignal-Austastbereich verlassen bzw. in den Bildsignalbereich gelangen. Dies ist zur Vermeidung von St·orungen unzul·assig.
Ausserdem l·asst sich bei zunehmender Entfernung der Burstaufzeichnung vom Spuranfang das gew·unschte Ziel der Spureinstellung im Sinne eines konstanten Spurabstandes am Spuranfang nicht mehr befriedigend erreichen.
Aufgabe der Erfindung ist es, bei der magnetischen Video aufzeichnung in Schr·agspuren auch bei geringem Versatz von Spur zu Spur ein Burstsignal f·ur die Einstellung des Spurabstandes aufzuzeichnen und wiederzugeben, das in seiner zeitlichen Ausdehnung so gew·ahlt werden kann, dass eine sichere Auswertung mit Hilfe der Regeleinrichtung f·ur die Verstellung des Magnetkopfes senkrecht zur Abtastrichtung im Sinne der Erreichung ·aquidistanter Spuren m·oglich ist.
Die erfindungsgem·asse L·osung dieser Aufgabe ist aus Figur 2 ersichtlich. Wird n·amlich die zeitliche Folge der Aufzeichnung und Wiedergabe des Burstsignals von Spur zu Spur alternierend gew·ahlt, dann kann das Burstsignal zeitlich ausgedehnt werden, ohne dass die unerw·unschte Erscheinung der Wanderung innerhalb der Spur in Abtastrichtung auftritt. Im dargestellten Beispiel nach Figur 2 ist in der ersten Spur die geometrische und zeitliche L·ange der Burstaufzeichnung beliebig gew·ahlt. In der folgenden Spur wird nun die Burstaufzeichnung bezogen auf den Spuranfang um die Burstl·ange zuz·uglich des Spurversatzes verschoben und der Lesevorgang vor den Schreibvorgang gelegt. Damit wird der zeitlich verl·angerte Burst vollst·andig ausgewertet und ein neuer Burst mit der gleichen L·ange aufgezeichnet.
In der dritten Spur schliesslich setzt die Burstaufzeichnung bezogen auf den Spuranfang wieder so ein wie in der ersten Spur, w·ahrend der Lesevorgang gegen·uber der Aufzeichnung um die Burstl·ange zuz·uglich des doppelten Spurversatzes verschoben ist. Durch Vertauschung der Reihenfolge von Schreiben und Lesen sowie durch Einf·ugen einer L·ucke zwischen Schreiben und Lesen in jeder zweiten Spur um die Dauer des doppelten Spurversatzes wird also sichergestellt, dass bei verl·angerter Burstdauer das Burstsignal in voller L·ange gelesen werden kann und trotzdem der Schreib- und Lesevorgang am Spuranfang verbleibt, wie es f·ur die wirkungsvolle und st·orsichere Regelung des Spurabstandes n·otig ist.
Ausserdem wird durch die erfindungsgem·asse Auf zeichnungs- Wiedergabe-Geometrie f·ur das Steuersignal (Burst) erreicht, dass jedem der beiden Magnetk·opfe ein konstanter zeitlicher Ablauf f·ur Aufzeichnung und Wiedergabe zugeordnet ist. Mit anderen Worten, der erste Videokopf (ungeradzahlige Spuren) zeichnet in festem Abstand oder zeitlicher Dauer vom Spuranfang auf, dann folgt eine L·ucke entsprechend dem doppelten Spurversatz, danach der Wiedergabebereich f·ur das Steuersignal (Burst).
Der zweite Videokopf (geradzahlige Spuren) gibt in festem Abstand oder zeitlicher Dauer vom Spuranfang wieder und zeichnet ohne l·ucke anschliessend auf.
Zum besseren Verst·andnis des Verfahrens sei noch angemerkt, dass die Wiedergabe des Steuersignals (Burst) aus der vorhergehenden Spur trotz Winkelentkopplung auch dann noch m·oglich ist, wenn der Video-Magnetkopf die vorhergehende Spur nicht mehr unmittelbar trifft.
Dies erkl·art sich daraus, dass die Frequenz des Steuersignals bezogen auf das Video signal verh·altnism·assig niedrig gew·ahlt wird, so dass die Winkelentkopplung unwirksam wird und das Streufeld ·uber die Spurbreite hinaus wirkt.


 DEVICE FOR ROTATING ANNULAR TRANSFORMERS IN A VIDEO SET:

 1. Arrangement of rotating toroidal transformers (10, 11) for the inductive transmission of high-frequency oscillations in a video recording and playback machine with at least two signal recording and playback heads (5, 6), which are preferably arranged offset by 180 degrees on a rotating head wheel (2) in a head drum, the transformers each having one rotating (10', 11') toroidal part and one fixed (10", 11") toroidal part, each signal head (5, 6) being assigned the rotating part of a transformer in a certain way, and the transformers (10, 11) being arranged axially one above the other, characterized in that the transformers (10, 11) have different ring sizes such that they do not radially overlap.


ANORDNUNG VON ROTIERENDEN RINGF·ORMIGEN TRANSFORMATOREN IN EINEM VIDEOGER·AT PATENTANSPR·UCHE

1. Anordnung von rotierenden ringf·ormigen Transformatoren zur induktiven ·Ubertragung hochfrequente
r Schwingungen in einem Video-Auf zeichnungs- und -Wiedergabeger·at mit wenigstens zwei Signal-Aufzeichnungs- und Wiedergabek·opfen, die vorzugsweise um 180 versetzt auf einem rotierenden Kopfrad in einer Kopftrommel angeordnet sind, und jedem Signalkopf der rotierende Teil eines Transformators in bestimmter Weise zugeordnet ist, d a d u r c h g e k e n n z e i c h n e t , dass ein Transformator (10) mit rotierendem und feststehendem ringf·ormigem Teil des ersten Signalkopfes (5) gegen·uber dem anderen rotierenden Transformator (11) des zweiten Signalkopf es (6) axial verschoben und durch verschiedene Ringgr·ossen radial und axial nicht ·uber schneidend in der Kopftrommel (1) angeordnet ist.

2. Anordnung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass das Kopfrad (2) einen hochgezogenen Flansch (13) aufweist, auf den ein rotierender Trafoteil (11) aufgesetzt ist, w·ahrend der andere rotierende Trafoteil mit der geringeren Ringgr·osse (10') auf der inneren Planseite des Kopfrades (14) angeordnet ist, und die H·ohe des Flansches wenigstens der gesamten Querschnittsh·ohe eines Transformators entspricht.

3. Anordnung nach Anspruch 2, d a d u r c g e k e n n z e i c h n e t , dass die H·ohe des Flansches des Kopfrades der halben Querschnittsh·ohe des kompletten Transformators entspricht.

Description:
ANORDNUNG VON ROTIERENDEN RINGF·ORMIGEN TRANSFORMATOREN IN EINEM VIDEOGERAT BESCHREIBUNG Die Erfindung betrifft eine Anordnung von rotierenden ringf·ormigen Transformatoren zur induktiven Ubertragung hochfrequenter Schwingungen in einem Video-Aufzeichnungs- und Wiedergabeger·at mit wenigstens zwei Signal-Aufzeichnungs- und Wiedergabek·opfen, die vorzugsweise um 1800 versetzt auf einem rotierenden Kopfrad in einer Kopftrommel angeordnet sind, und jedem Signalkopf der rotierende Teil eines Transformators in bestimmter Weise zugeordnet ist.
Bei den meisten bekannten magnetischen Bild-Aufzeichnungs- und Wiedergabeger·aten mit bandf·ormigem Aufzeichnungsmedium erfolgt die Aufzeichnung und Wiedergabe der Video signale auf das Magnetband mittels sogenannter Schr·agspuraufzeichnung bzw. Abtastung ·uber auf einem rotierenden Kopfrad angeordnete Videok·opfe.
Es ist bekannt, dass hierbei die hochfrequenten Schwingungen mit Hilfe eines rotierenden Transformators induktiv ·ubertragen werden. Da vorzugsweise mit zwei um 1800 auf dem Kopfrad versetzt angeordneten Videok·opfen gearbeitet wird, sind auch hierzu zwei getrennte rotierende Transformatoren erforderlich. Das Kopfrad mit den beiden Videok·opfen ist mit den rotierenden Transformatoren in einer vom Magnetband teilweise umschlungenen zweigeteilten Kopftrommel integriert, wobei wenigstens ein Teil der Kopftrommel feststeht. Die Unterbringung der beiden rotierenden Transformatoren erfolgt in bekannter Weise in der Kopftrommel derart, dass diese entweder axial ·ubereinander angeordnet sind, oder sich mit verschiedenen Radien der einzelnen ·Ubertragerringe in einer Ebene befinden.
Ein wesentlicher Unterschied dieser verschiedenen Anordnungen ergibt sich in der Bewertung der Ubersprechd·ampfung von einem zum anderen rotierenden Transformator. Eine messwertm·assig grosse Obersprechd·ampfung ist bei Ger·aten der geschilderten Art in zunehmender Weise w·unschenswert, da inzwischen auch das Stereo-Tonsignal im Schr·agspurverfahren aufgezeichnet bzw. abgetastet wird.
Es kann somit in Videoaufzeichnungsger·aten ein PCM Tonsignal in einer Zusatzumschlingung vor oder nach der Video spur aufgezeichnet werden. Besonders hohe Anforderungen an die ·Ubersprechd·ampfung zwischen den beiden rotierenden Signal·ubertragern (Transformatoren) werden dann noch gestellt, wenn bei dieser genannten Technik eine Nachvertonung gew·unscht wird, denn dann ist es erforderlich, dass ein Videokopf mit dem PCM Schreibstrom angesteuert wird, w·ahrend der andere Videokopf das frequenzmodulierte Videosignal ausliest Die hierf·ur erforderliche hohe Ubersprechd·ampfung ist nach den bisher bekannten Anordnungen von rotierenden Transformatoren in der Kopftrommel eines Videoaufzeichnungsger·ates nicht gegeben.
Aufgabe der Erfindung ist es daher, eine Anordnung und Ausf·uhrung von wenigstens zwei rotierenden Transformatoren in Videoaufzeichnungsger·aten zu schaffen, die einerseits ein gutes ·Ubersprechverhalten sicherstellt und andererseits einen einfachen konstruktiven Einbau der rotierenden Transformatoren in die Kopftrommel des Ger·ates gew·ahrleistet.
Diese Aufgabe wird erfindungsgem·ass durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gel·ost.
Vorteilhafte Ausgestaltungen des erfindungsgem·assen Aufbaus eines rotierenden ringf·ormigen Transformators in einer Kopftrommel f·ur Videoaufzeichnungsger·ate ergeben sich aus den Unteranspr·uchen.
Ein Ausf·uhrungsbeispiel wird nachfolgend anhand einer schematischen Zeichnung n·aher erl·autert.
Die im Schnitt dargestellte Figur zeigt eine Kopftrommel 1 mit eingesetztem Kopfrad 2. Der obere Teil 3 der Kopftrommel ist mit dem Kopfrad drehbar in einem unteren Teil 4 der Kopftrommel gelagert. Auf beiden Seiten um 180 versetzt, sind die Signalk·opfe 5 und 6 auf dem Kopfrad angeordnet. Auf einer nur teilweise dargestellten Welle 7 ist das Kopfrad aufgezogen und ·uber zwei Kugellager 8 in der Kopftrommel gelagert. Zur Vereinfachung der dargestellten Figur ist der Antrieb der Kopftrommel nicht gezeichnet, ebenso ist der Chassisteil 9, auf dem die Kopftrommel befestigt ist, nur zeichnungsm·assig angedeutet. Die beiden rotierenden Transformatoren 10 und 11 sind versetzt in der Kopftrommel angeordnet, wobei der Transformator 10 dem Signalkopf 5 und der Transformator 11 dem Signalkopf 6 zugeordnet ist.
Die Anschl·usse der Signalk·opfe werden jeweils ·uber eine Kontaktplatte 12, die sich im oberen Teil der Kopftrommel befindet, zu den Transformatoren 10 und 11 gef·uhrt. Die rotierenden Transformatoren bestehen, wie bekannt, aus zwei Ringkernh·alften mit eingelegten Wicklungen, wobei der jeweils rotierende Teil 10' und 11' an dem Kopfrad und der feststehende Teil 10'' und 11'' am unteren Teil der Kopftrommel befestigt ist. Die beiden Ringteile sind durch einen sehr kleinen Luftspalt getrennt. Die Anschl·usse der feststehenden Trafo-Ringteile werden in einfachster Weise ·uber Bohrungen, die sich im unteren Teil der Kopftrommel befinden, an eine nicht n·aher dargestellte Schaltungsplatte gef·uhrt.
Nach der Zeichnung ist der Transformator 10, der dem ersten Signalkopf 5 zugeordnet ist, gegen·uber dem anderen Transformator 11, der dem zweiten Signalkopf 6 zugeordnet ist, axial verschoben und durch verschiedene Ringgr·osse radial und axial nicht ·uberschneidend in der Kopftrommel angeordnet. Um diese Anordnung zu erreichen, weist das Kopfrad 2 einen ·ausseren hochgezogenen Flansch 13 auf, an dem der rotierende Trafoteil 11' des Trafos 11 (mit grossem Ringdurchmesser) befestigt ist. Der rotierende Trafoteil 10' mit der geringeren Ringgr·osse befindet sich hingegen auf der inneren Planseite 14 des Kopfrades. Die H·ohe des Flansches entspricht bei dieser Anordnung wenigstens der gesamten Querschnittsh·ohe eines kompletten Transformators.
Eine andere nicht dargestellte Anordnung sieht eine Flanschh·ohe vor, die etwa nur der halben Querschnittsh·ohe des Transformators entspricht.







GRUNDIG SYSTEM 2000  VIDEO 2X4-PLUS   System for extending the playing time of video cassettes in VIDEO2000 SYSTEM.

 A system is provided for extending the playing time of standardized V2000 video cassettes. The system utilizes a rotating head drum having mounted thereon a first set of video heads displaced 180° with respect to each other, a second set of video heads displaced by a certain amount from 180° with respect to each other, a rotating winding of a transformer, and relays to interconnect the heads of either the first or second set of heads with the rotating winding as the head drum rotates. The relays are controlled by stationary coils and logic to respond to the setting of switches to enable the system to operate at normal tape speed via the first set of heads or reduced tape speed via the second set of heads without requiring any change in the speed of rotation of the head drum.


1. In a video tape record/playback machine of the type including a tape transport, a tape transport drive, a rotating head drum, means for rotating said head drum, a first pair of video heads mounted on said head drum and displaced from each other by 180°, and a transformer having a rotating winding mounted to said head drum and a stationary winding; the improvement comprising: a second pair of video heads mounted to said head drum and displaced from each other by an angle slightly different from 180° and control means to interconnect said first pair of video heads and said rotating winding when said tape transport drive is operated at a normal speed and to interconnect at least one of the video heads of said second pair and said rotating winding when said tape transport drive is operated at a lower, extended play speed.

2. The machine in accordance with claim 1 wherein said control means comprises: a first polarized relay affixed to said head drum for rotation therewith, said first relay having a first position interconnecting said first pair of video heads to said rotating winding and a second position interconnecting said second pair of video heads to said rotating winding;
first and second stationary exciter coils in controlling relationship with said first relay to drive said first relay to said first or second position;
switch means having a "normal" position and a "long play" position; and
logic circuit means responsive to the "normal" or "long play" position of said switch means to activate said exciter coils to drive said first relay to said first or second position respectively.


3. The machine in accordance with claim 2 wherein said second pair of video heads comprises a record/playback head and a playback only head; said switch means further has a "record" position and a "playback" position and further comprising
a second polarized relay affixed to said head drum for rotation therewith and having a "playback" position interconnecting both heads of said second pair of video heads with said rotating winding and a "record" position interconnecting only said record/playback head with said rotating winding;
said first and second stationary exciter coils are in controlling relationship with said second relay to drive said second relay to said "record" or "playback" position; and
said logic circuit means is responsive to said "record" or "playback" position of said switch to activate said exciter coils to drive said second relay to said "record" or "playback" position respectively.


4. The machine in accordance with claim 3 wherein said switch means further includes a "start" position indicating that said tape transport drive has been activated and said logic circuit means is responsive to said "start" position of said switch to activate said exciter coils to drive said first relay to said first position regardless of whether said switch is in said "normal" or "long play" position.

5. The machine in accordance with claim 1 further comprising a servo control connected to said tape transport drive, a tachometer generator secured to said tape transport drive adapted to generate pulses responsive to the rotational speed of said drive; a tape transported past said head drum by said tape transport, said tape having thereon first and second slant tracks, and the nominal output of said tachometer generator at said normal and lower speeds are integral multiples of the frame frequency of said slant tracks.

6. The machine in accordance with claim 5 further comprising: a divider connected to the output of said tachometer generator, said divider having a first state to divide the output of said tachometer generator by a first fixed integer to reduce it to the frame frequency when said tape transport operates at normal speed and a second state to divide the output of said tachometer generator by a second fixed integer to reduce it to the frame frequency when said tape transport operates at a lower speed;
a comparator having a first input from said divider, a second input from a reference pulse source, and an output in controlling relationship with said servo control;
a reference pulse source; and
means for switching said reference pulse source between a first state to generate reference pulses corresponding to said normal speed and a second state to generate reference pulses corresponding to said lower speed.


7. Video tape cassette recorder provided for the use of V2000 standardized video cassettes and for extending the playing time of said video cassettes, said recorder including a tape transport mechanism capable of driving the tape at a normal standardized speed and at essentially half the standardized speed, a rotating head drum with a first pair of video heads displaced from each other by 180° and with a second pair of video heads displayed from each other by an angle slightly different from 180° and displaced from said first pair by a suitable angle; a transformer with one stationary winding and one rotating winding mounted to said head drum, said head drum being equipped with a first polarized relay to connect said first or said second pair of video heads to said rotating transformer winding and with a second polarized relay to connect one or both of said second pair of video heads to said rotating transformer winding; said first and said second polarized relays being displaced from each other by 180° and being actuated in both positions by first and second stationary coils excited through logic circuits under the control of position pulses of said head drum and of the switching mode of operative switches, said operative switches being shiftable between normal or long play or record or playback positions.

8. A video tape cassette recorder in accordance with claim 7 wherein said operative switches include a special switch for the start and the stop of the tape transport drive; said special switch being interconnected with said logic circuits so as to connect in the stop position of said special switch said first pair of video heads to said rotating transformer winding regardless of whether said respective operative switch is in the normal or in the long play mode position.

9. A video tape cassette recorder in accordance with claim 7 further comprising a tachometer generator and a frequency divider for the output pulses of said tachometer generator; said tachometer generator being secured to and producing a plurality of pulses per revolution of said tape transport drive; the frequency of said tachometer generator output pulses being an integral multiple of the frame frequency of the video signal at both the rated normal and the rated low speed of said tape transport drive; and said frequency divider being switchable between two division factors so as to divide to frame frequency the frequency of said tachometer generator output pulses at both, the rated normal and the rated low speed of said tape transport drive.

Description:
BACKGROUND OF THE INVENTION
The present invention relates to video tape recording and more particularly to a system for extending the playing time of standardized video cassettes in which each of two rotating video heads, displaced relative to each other by 180°, records or scans one slant track per television field.
In the standard video cassette intended for home use, a magnetic tape located in a cassette is utilized. When the cassette is positioned in the video equipment, the tape is pulled from the cassette and positioned for operation. In order to permit interchangeability of the cassette (i.e., in order to insure that a cassette recorded on one machine can be played back on another machine) certain system standards have been established which are adhered to by the industry. These standards include the geometry of the slant tracks, the speed of rotation of the head drum, the number of video heads mounted on the drum, and the transport speed of the tape past the head drum. In one popular cassette system two video heads are mounted on the head drum 180° apart from each other and displaced to record or scan along one slant track. With 50 fields per second (as is common in most European countries) the head drum must therefore rotate at 1500 RPM. In order that the common line interlace of 312.5 lines per field is recorded and reproduced correctly, a tape speed must be chosen so that the spacing between the tracks (in the lengthwise direction of the tape) corresponds to an odd multiple of half lines. In the aforementioned system, this multiple was chosen as 11.
As a result of the above established standards, the maximum playing time of a cassette is limited to about an hour utilizing the thinnest tapes available. This playing time is not sufficient for certain forms of desired programs (e.g., such as full-length motion pictures). Thus, a considerable need exists for a system to extend the playing time of a standard cassette while maintaining provision for normal recording and playback capabilities.

It has heretofore been proposed (in German Pat. No. 1,437,141 for example) that the playing time of a given length of tape could be extended through the slant track method by recording only the even or odd television fields but scanning them twice during playback with the tape transport moving at roughly half the normal speed. In practice, a head drum which rotates at 1500 RPM and carries two video heads is utilized. The magnetic tape is looped 180° over the head drum. For recording, only one of the heads operates while for playing back both heads scan the same track. It is also known that in this case the two heads must no longer be precisely 180° apart from each other but the additional head position must be displaced by a slight amount from 180°. In practice this displacement distance is on the order of a millimeter and thus, it would not be practical to mount an additional head displaced by this slight amount.
The principal object of the present invention is to provide an improved video cassette machine capable of functioning in both a standard normal mode and an extended play mode.
A further object is to provide such a machine which can be readily switched from one mode to the other without requiring any intervention with the drive mechanism of the head drum.

SUMMARY OF THE INVENTION
The above and other beneficial objects and advantages are attained in accordance with the present invention by providing an improved video tape record/playback machine capable of normal as well as extended play operation. Video tape record/playback machine includes a tape transport, a tape transport drive, a rotating head drum, a motor for rotating the head drum, a first pair of video heads mounted on the head drum and displaced from each other by 180° of arc, and a transformer having a rotating winding mounted to the head drum and a stationary winding. In addition to the above, the present device further includes a second pair of video heads mounted to the head drum and displaced by an angle slightly different from 180°. In addition, means are provided to interconnect the first pair of video heads and the rotating winding when the tape transport drive is operated at a normal speed and to interconnect at least one of the video heads of the second set and the rotating winding of the transformer when the tape transport drive is operated at a lower, extended play speed. The control means includes a set of polarized relays affixed to the head drum for rotation therewith as well as stationary exciter coils which activate the relays. The exciter coils, in turn, are activated through a control logic circuit which is governed by switches set at the desired operational mode.


BRIEF DESCRIPTION OF THE DRAWINGS
In the accompanying drawings:
FIG. 1 is a schematic of the head drum and its control logic;
FIG. 2 is a circuit diagram of the switching arrangement between the normal and long playing heads; and
FIG. 3 is a schematic of the tape speed switching arrangement.
DETAILED DESCRIPTION OF THE PREPARED EMBODIMENT
Reference is now made to the drawings wherein similar components bear the same reference numeral throughout the several views.


In FIG. 1, a rotating drum head 1 is shown carrying a first set of heads N1 and N2 displaced 180° apart from each other f1 could theoretically be used with another head displaced slightly apart from N2 by a distance on the order of 1 millimeter. Since this is not practical to effect, a second set of heads L1 and L2 is mounted to the head drum with the displacement between heads L1 and L2 being off slightly from 180° as shown. The arrows adjacent to the heads N1, N2, L1 and L2 depict their operability. Accordingly, heads N1, N2 and L1 are designed for record and playback operation while head L2 is designed for playback operation only.


or normal (N mode) operation. For long playing (L mode) operation head N
Referring briefly to FIG. 2, it can be seen that a rotating transformer 2 is provided with one rotating winding and one stationary winding. Since rotating multiple transformers are expensive, only a simple transformer 2 is provided. As shown in FIG. 1, a small polarized relay 3 rotates with the head drum and serves to connect the rotating winding of the transformer with heads N1 -N2 or L1 -L2 as required. To this end, the relay 3 is switched by stationary exciter coils 4 and 5 as the head drum rotates. A second polarized relay 6 is also provided to connect both heads L1 and L2 to the transformer winding during L mode-playback but only head L1 to the transformer winding during L mode-record. The electrical contacts of the polarized relays 3 and 6 are shown in FIG. 2.
The logic and switches for the control of the polarized relays 3 and 6 is depicted in FIG. 1. Thus, as shown, coil 4 is energized by the output of AND gates 7 or 8. Coil 5 is energized by the output of AND gates 9 or 10. In turn, each of the AND gates 7, 8, 9 and 10 has an input from the function switches 11 used to determine (a) L or N mode; (b) record or playback; and (c) whether the tape transport is operative or not.
In addition to the above, gates 7 and 9 each have another input connected to a position pickup 13. Pickup 13 comprises a simple transducer designed to generate a pulse each time a small permanent magnet 14 which rotates with the head drum rotates past the pickup. Thus, the polarized relay 3 is activated through coils 4 or 5 each time the magnet 14 moves past the position pickup and is therefore controlled by either the gates 7 or 9 depending on whether switch 11 is in the "L" or "N" position.
The output of pickup 13 is also delayed 20 ms through delay means 12 and then applied to gates 8 and 10. 20 ms corresponds to the time it takes for the drum head 1, rotating at 1500 RPM, to rotate through 180°. Thus, 20 ms or half a head drum rotation after relay 3 is excited by coils 4 or 5, relay 6 is excited by coils 4 or 5.
In N mode (i.e., switch 11 at N position) the electrical contacts of relay 3 are switched to N thereby connecting the heads N1 and N2 in series with the rotating transformer. The position of the contacts of relay 6 is immaterial since in N position relay 3 shunts past heads L1 and L2. The operation of the cassette system then proceeds in a conventional manner.
In L mode -- record, (switch 11 at L and "record") the electrical contacts of relay 3 are switched to the L position via the AND gate 15, the OR gate 16 and AND gate 9. After 20 ms, relay 6 is energized via gates 15 and 8 and the head L1 is thereby connected to rotating transformer 2.
In L mode -- playback (switch 11 at L and "playback") one must differentiate between the tape in the running or stopped condition. The latter would occur, for example, for the reproduction of still pictures. It has been found that with the magnetic tape stopped, even when in the "L" mode, the N heads must be utilized since the L heads will incorrectly scan the tracks resulting in phase shift and poor signal to noise ratio. Thus, if switch 11 is in the L mode -- playback position but the tape drive is not started, relay 3 is switched to the N position via inverted AND gate 17, AND gate 18, and AND gate 7.
When the tape drive is started (and switch 11 is thus in the L mode -- playback, tape start position) the relay 3 is switched to the L position via AND gate 19, OR gate 16 and AND gate 9. In addition 20 ms later relay 6 is energized to the playback position via AND gate 10 so that the two heads L1 and L2 are connected in series with the transformer coil 2.
In both the N and L modes of operation the start of each slant track has to coincide with the start of a field and hence phase control of the head drum 2 is required. This is accomplished by means of a phase comparator 20 which compares pulses from the pickup 13 with reference pulses from an outside reference source 21. The reference pulses could, for example, comprise the vertical synchronous pulses separated from the video signal. The output of the comparator 21 is fed to an amplifier 22 which feeds the drive motor 23 of the head drum 1.
A phase shifter 24 is provided between the comparator 20 and pickup 13 to compensate for tolerances of the apparatus. The phase difference corresponding to the angle α in FIG. 1 which occurs in the transition from N to L operation is compensated for via switch 25.
Usually, during recording, the servo control of the tape transport motor compares the frequency and phase of the actual values of a tachometer generator coupled with the transport shaft with reference values which generally are derived from the frame frequency and which are simultaneously recorded on the magnetic tape as a separate synchronization track. Here the control accuracy of the tape transport becomes greater, the larger the number of pulses which are delivered by the tachometer generator per revolution of the transport shaft. The previously mentioned conditions for the mutual spacing of the slant tracks recorded on the tape and the dependence of this spacing on line duration also applies analogously to L-operation. However, since in L-operation only every other field is recorded the track spacing, as measured in the lengthwise direction of the tape, must now correspond to an odd multiple of whole lines. The result is that the transport velocity of the magnetic tape in L-operation must not be exactly equal to one-half of that in N-operation, but may be somewhat greater or smaller.
In the present case with a track spacing in N-operation corresponding to 11 half-lines, a track spacing corresponding to five whole lines must therefore be chosen in L-operation, i.e., the speed of rotation of the transport shaft must be reduced in the ratio of 5:11. The frequency of the pulses delivered by the tachometer generator is thereby also decreased in the ratio of 5:11.
In order to carry out the switching of the speed between N- and L- operation as simply as possible and, also, by purely electrical means, the number of tachometer pulses per revolution of the transport shaft is chosen so that the tachometer pulse frequencies which occur at the desired speed of the magnetic tape in N- and L- operation are integral multiples of the frame frequency. If, therefore, Z is the number of tachometer pulses per revolution of the transport shaft, and if nN and nL are its speed of rotation in N- and L-operation, the following is to apply: Z . nN = p . 25 and Z . nL = q . 25,
where p and q are integral numbers and 25 Hz is the frame frequency. Since the ratio of the speeds of rotation is the same as that of the line numbers corresponding to the track spacings, therefore, in the example above nN /nL = 11/5 and p/q = 11/5.
FIG. 3 shows the circuit diagram of the transport shaft control and of the transport speed switching arrangement. For simplicity, only the recording operation is shown. Motor 26 drives the magnetic tape in the direction of the arrow via the transport shaft 27 and a rubber pressure roller (not shown). A tachometer generator is coupled to the transport shaft. This may consist of a ferromagnetic gear 29 and a pickup 30 which generates pulses in response to rotation of the gear. The tachometer pulses are fed via an amplifier 31 to a frequency comparator 32 and a switchable frequency divider 33. The time constant of an R-C circuit or the charging time of a capacitor can serve as the reference for comparator 32. Both of these can be adjusted by simple means via the double-throw switch 34 to the pulse frequencies coming from pickup 30 in N- or L-operation. A divider 33 divides the tachometer pulse frequency down to the frame frequency, where the division ratio can be changed by means of switch 35 from p:1 in N-operation to q:1 in L-operation. The actual frame frequency appearing at the output of divider 33 is phase-compared in comparator 36 with the reference frame frequency and the error signal so produced also serves as an input to control the frequency comparator 32.
The reference frame frequency is obtained in the frequency divider 37 by halving the vertical blanking frequency, which is separated from the video signal to be recorded and is fed to the terminal 38. This frame frequency is recorded at the same time on the tape 28 as the sychronization track 40 via the stationary magnetic head 39. The resulting error signal produced in 32 controls the motor 26 via the control amplifier 41.
With the numbers given above, the number of teeth of the ferromagnetic gear tachometer 29 can, for example, be chosen as 110. If the desired speed of rotation of the motor 26 is 750 RPM in N-operation, p = 55 and q = 25 for the divider 33.
The switches 34 and 35 shown in FIG. 3 can be ganged to operate together with the N/L switch 11. To prevent operating errors, it is advisable, however, to operate the switch 25 via the control logic rather than manually.
Thus in accordance with the above, the aforementioned objectives are effectively attained.

GRUNDIG SYSTEM 2000  VIDEO 2X4-PLUS    Helical scan apparatus for video tape or the like and having rotating-head inclination-adjustment means:

 A helical scan recording and playback apparatus wherein magnetic video tape forms a helix about the peripheral surfaces of two coaxial drums which define an annular gap for magnetic heads which orbit in a chamber between the drums and engage inclined tracks at the inner side of the helix. The heads are mounted on a disk which is rotatable on a sleeve surrounding with clearance a shaft for the drums and having an internal protuberance which is tiltable with respect to the periphery of the shaft by a rod extending through an opening in the flange of one of the drums. The inclination of the plane of orbital movement of the heads relative to the central symmetry plane of the gap is changed when the speed of lengthwise movement of tape during playback deviates from the speed of lengthwise movement of tape during recording.


1. In a helical scan apparatus wherein information is recorded on or reproduced from magnetic tape which is moved lengthwise and forms a helix about the peripheral surfaces to two coaxial drums which surround a shaft, wherein the peripheral surfaces of said drums define an annular gap for at least one magnetic head which orbits in a first plane and thereby engages inclined tracks of said helix, and wherein said gap has a central symmetry plane which is normal to the common axis of said drums, a combination comprising a carrier for said head, said carrier being disposed between said drums; means for rotating said carrier to thereby orbit said head along said gap; and means for changing the inclination of said first plane relative to said symmetry plane when the speed of tape movement during reproduction deviates from the speed of tape movement during recording so as to conform the path of said head to the inclination of tracks on said helix, comprising a bearing assembly for said carrier and including a sleeve intermediate said drums and rotatably supporting said carrier coaxial with the same, said sleeve having an internal surface spacedly surrounding said shaft and having a protuberance tiltably engaging the periphery of said shaft, and tilting means actuatable for tilting said bearing assembly with respect to the common axis of said drums to thereby change the inclination of said sleeve.

2. A combination as defined in claim 1, wherein said protuberance is an annulus.

3. A combination as defined in claim 1, wherein said protuberance engages said shaft in said symmetry plane.

4. A combination as defined in claim 1, wherein said protuberance is a bearing.

5. A combination as defined in claim 1, further comprising means for yieldably urging said sleeve to a position in which said carrier is coaxial with said drums.

6. A combination as defined in claim 1, wherein one of said drums has an opening and said tilting means comprises a rod rigid with said sleeve and extending through said opening.

7. A combination as defined in claim 1, further comprising antifriction bearing means interposed between said carrier and said sleeve.

8. A combination as defined in claim 1, further comprising an energy source for said head, including a rotor mounted on said carrier and electrically connected with said head and a stator mounted on said bearing assembly adjacent to said rotor.


Description:
BACKGROUND OF THE INVENTION
The present invention relates to apparatus for recording and/or reproducing high-frequency information on magnetic tape, and more particularly to a mechanism for guiding magnetic tape and one or more magnetic heads in such apparatus.
It is already known to guide magnetic tape along the peripheral surfaces to two coaxial drums which define an annular gap for one or more magnetic heads mounted in the interior of the drum and serving to record or reproduce information on the tape. The diameters of the peripheral surfaces are identical or nearly identical and the portion of tape which engages such peripheral surfaces forms a helical loop (e.g., an alpha loop or an omega loop). One of both drums may be driven or head against rotation about their common axis. The magnetic head or heads are mounted on a carrier or bracket which relates about the common axis of and is located between the drums. The plane in which the carrier rotates the head or heads coincides with the central plane of the gap between the peripheral surfaces of the drums.
In recording-reproducing apparatus which employ video tape, the speed at which the tape moves during recording may but need not equal the tape speed during reproduction. Thus, it is often desired to accelerate the reproduction, to make slow-motion reproductions of recorded information or to reproduce still images of a particular subject or scene. This creates problems in the aforedescribed apparatus wherein the tape portions which is trained around the peripheral surfaces of the drums forms a helix. As is known, such guidance of the tape is desirable because it allows for relatively high signal density in each of the scan lines which is particularly desirable in connection with recording of television signals, i.e., an entire image can be recorded on a single relatively long track. The track makes an acute angle with the marginal portions of the tape. The inclination of the track is determined primarily by two factors, namely by inclination of the tape with respect to the common axis of the drums and by speed of lengthwise movement of the tape. If the direction of movement of the tape about the drums is identical with the direction of rotation of the heads, the inclination of the track with respect to the marginal portions of the tape increases with increasing speed of the tape. On the other hand, the inclination of the track decreases if the tape is being advanced counter to the direction of rotation of the heads and the speed of the tape increases.
If the speed of reproduction in a video system is less than the speed during recording, i.e., if the reproduction is to furnish a slow-motion or still-image effect, portions of the heads leave the adjacent tracks with the result that the quality of a substantial portion of the reproduced image is less than satisfactory, i.e., the reproduction takes place with a much less satisfactory signal to noise ratio.
Certain presently known helical scan apparatus are equipped with complex and expensive electronic systems which are designed to compensate for or suppress the just described phenomena. It is also known to employ a mechanical compensating system which is designed to change the path of tape with respect to the drums, i.e., to change the lead of the helical loop which engages the drums. Such proposal is not satisfactory because the tape undergoes undesirable deformation and also because the change in lead is not reproducible, with a requisite degree of accuracy owing to friction with the drums.

SUMMARY OF THE INVENTION
An object of the invention is to provide an apparatus which insures proper registry of magnetic heads with the inclined track on a helically wound magnetic tape by resorting to a small number of simple, rugged and inexpensive parts.
Another object of the invention is to provide s single mechanical device which maintains the magnetic heads of a helical scan apparatus in accurate register with the track even if the speed of magnetic tape during reproduction varies and deviates from the speed during recording.
A further object of the invention is to provide a helical scan apparatus with a device which insures accurate register of the magnetic head with inclined tracks on a helically looped magnetic tape during reproduction with slow-motion, still-image and/or acceleration effect.
The invention is embodied in a helical scan apparatus wherein information is recorded on or reproduced from magnetic tape which is moved lengthwise and forms a helix about the peripheral surfaces of two coaxial drums, wherein the peripheral surfaces of the drums define an annular gap for at least one magnetic head which orbits in a first plane and thereby engages inclined tracks at the inner side of the helix, and wherein the gap has a central symmetry plane which is normal to the common axis of the drums. The apparatus comprises a carrier (e.g., a disk) which supports the head or heads and is located between the drums, a belt transmission or analogous means for rotating the carrier to thereby orbit the head or heads along the gap, and means for changing the inclination of the first plane with respect to the symmetry plane of the gap when the speed of tape movement during reproduction (playback) deviates from the speed of tape movement during recording so as to conform the path of orbital movement of the head or heads to the inclination of tracks on the helix.

The inclination changing means preferably comprises a bearing assembly for the carrier and means for tilting the bearing assembly with respect to the common axis of the drums.
The drums are mounted on a common shaft and the bearing assembly preferably comprises a sleeve which is disposed intermediate the drums and rotatably supports the carrier. The sleeve has an internal surface which spacedly surrounds the shaft and has a preferably annular protuberance (e.g., a spherical or prismatic bearing) which tiltably engages the periphery of the shaft. The tilting means is actuatable to change the inclination of the sleeve which is coaxial with the carrier so that the inclination of the first plane with respect to the symmetry plane changes in response to tilting of the sleeve. The protuberance is preferably located in or immediately adjacent to the symmetry plane. The sleeve is held against axial movement relative to the shaft.
The novel features which are considered as characteristic of the invention are set forth in the appended claims. The improved helical scan apparatus itself, however, both as to its construction and its mode of operation, together with additional features and advantages thereof, will be best understood upon perusal of the following detailed description of certain specific embodiments with reference to the accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a fragmetary partly diagrammatic axial sectional view of a helical scan apparatus which embodies the invention; and
FIG. 2 is a smaller-scale plan view of the apparatus.

DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows a portion of the improved helica
l scan apparatus which comprises two coaxial drums 1 and 1' having peripheral surfaces 1A, 1A' of identical or nearly identical diameter and serving to guide a video tape 20 (FIG. 2) which can form a so-called alpha or a so-called omega loop (omega loop shown in FIG. 2). The drums 1 and 1' are mounted on a common shaft 2 and their peripheral surfaces 1A, 1A' are spaced apart to define an annular clearance or gap 3 surrounding the endless path of one or more magnetic heads 4 mounted on a disk-shaped carrier 5 which is tiltably mounted on the shaft 2 in the chamber or space 101 defined by the drums 1 and 1'. As a rule, the carrier 5 supports two heads 4 which are located diametrically opposite each other with respect to the axis of the shaft 2. The hub 5a of the carrier 5 is mounted on two antifriction ball bearings 6, 6' which surround a tiltable bearing sleeve 7 mounted in the chamber 101 and having an internal surface surrounding, with certain clearance, the shaft 2.
The energy source for the head or heads 4 includes a transformer having a rotor 8 mounted on the carrier 5 and a stator 9 mounted in the drum 1'. The means for rotating the carrier 5 includes a drive having a motor 19 (FIG. 2) an endless belt or cord 10 engaging a sheave-like portion of the hub 5a.
The internal surface of the bearing sleeve 7 has an annular bearing portion or protuberance 11 which engages with the peripheral surface of the shaft 2 in or very close to the central symmetry plane X--X of the gap 3. The aforementioned clearance between the internal surface of the bearing sleeve 7 and the peripheral surface of the shaft 2 has a first portion at one side and a second portion at the other side of the bearing portion 11. The upper end of the bearing sleeve 7 (as viewed in the drawing) has a larger-diameter portion or collar 13 which is connected with a pin- or rod-shaped tilting member 12 extending with clearance through an opening ID' in the flange 1B' of the drum 1'. If the member 12 is pushed or pulled in the direction indicated by arrow A or B, or moved axially, the sleeve 7 is tilted with respect to the shaft 2 and thereby changes the inclination of the plane of orbital movement of heads 4 with respect to the symmetry plane X--X of the gap 3. Thus, by moving the member 12, one can move the tape-contacting portion of the head 4 above or below the central plane of the gap 3. This enables the head 4 to conform to the changed position of scan lines on video tape 20 which is being moved along the gap 3, with or relative to the peripheral surface 1A and/or 1A'. The position tracks on the tape with respect to the head 4 changes if the speed of tape, during reproduction of information, deviates from the speed during recording. A package of dished springs 14 is interposed between the flange 1B' and the collar 13 to bear against the collar and to bias the sleeve 7 to a desired neutral position while permitting for tilting of the sleeve in response to shifting of the member 12. The carrier 5 shares the tilting movements of sleeve 7 under the action of the member 12. In FIG. 1, the plane of orbital movement of the heads 4 coincides with the symmetry plane X--X.
FIG. 2 shows that the tape 20 is being paid out by a supply reel 21 and is being collected by a takeup reel 22. The means for moving the tape 20 lengthwise comprises a pinch roller 23, a capstan 24 and a motor 25 which drives the capstan 24. Rollers 26 guide the tape 20 between the reel 21 and the peripheral surfaces 1A, 1A' of the drums 1, 1' (only the drum 1' is shown in FIG. 2) as well as between such peripheral surfaces and the capstan 24. The carrier 5 is driven by the aforementioned motor 19. The means for tilting or otherwise moving the rod 12 relative to the shaft 2 is not shown in FIG. 2.
The tiltable mounting of carrier 5 with bearing assembly 6, 6', 7, 11 can be modified in a number of ways without departing from the spirit of the invention. For example, the antifriction bearings 6, 6' can be replaced with a single bearing located in the plane of the gap 3. Moreover, one can replace the protuberance 11 with a tiltable prismatic or spherical antifriction bearing. All that counts is to insure that the carrier 5 can be tilted relative to the gap 3 and preferably rotated relative to the shaft 2 while the helical scan apparatus is in use. It has been found that the illustrated arrangement performs quite satisfactorily and can stand long periods of use.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features which fairly constitute essential characteristics of the generic and specific aspects of my contribution to the art and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the claims.
What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims.



GRUNDIG SYSTEM 2000  VIDEO 2X4-PLUS   Device for the track following of rotating magnetic heads SYSTEM VIDEO2000.(DYNAMIC TRACK FOLLOWING)

1. Device for the track following of rotating magnetic heads (2, 3) in magnetic tape devices, in which piezoelectric elements (4, 5) are used as carriers of the magnetic heads, are clamped at one end firmly in a rotating holder and are connected at their deflectable end to the magnetic head, the free length (b) of the piezoelectric elements (4, 5) running at an angle to the joining line between assigned magnetic head and point of rotation of the rotating holder, to increase the deflection, characterized in that the free length (b) of the piezoelectric elements (4, 5) extends up to approximately level with the point of rotation and in that, to compensate for azimut errors, the piezoelectric elements (4, 5) are clamped into the rotating holder (1) at such an angle that the clamping lengths (a1 , a2 ) at the edges of the respective piezoelectric element are of different sizes. 

EINRICHTUNG F·UR DIE SPURNACHESHRUNG VON ROTIERENDEN MAGNETK·OPFEN PATENTANSPR·UCHE

1. Einrichtung f·ur die Spurnachf·uhrung von rotierenden Magnetk·opfen in Magnetbandger·aten, bei der als Tr·ager der Magnetk·opfe Piezoelemente verwendet sind, die an einem Ende fest in einer rotierenden Halterung eingespannt und an ihrem auslenkbaren Ende mit dem Magnetkopf verbunden sind, d a d u r c h g e k e n n z e i c h n e t , dass zur Erh·ohung der Auslenkung die freie L·ange (b) der Piezoelemente (4, 5) schr·ag zur Verbindungslinie (6, 7) zwischen zugeordnetem Magnetkopf (2, 3) und Drehpunkt (8) der rotierenden Halterung (1) bis etwa in der H·ohe dieses Drehpunktes verl·auft, und dass zur Kompensation von Azimutfehlern die Piezoelemente schr·ag (a1, a2) in die rotierende Halterung eingespannt sind.

2. Einrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die rotierende Halterung der Piezoelemente fest mit einem rotierenden Kopfrad (1) verbunden ist.

Description:
EINRICHTUNG F·UR DIE SPURNACHF·UHRUNG VON ROTIERENDEN MAGNETK·OPFEN BESCHREIBUNG Die Erf
indung betrifft eine Einrichtung f·ur die Spurnachf·uhrung von rotierenden Magnetk·opfen in Magnetbandger·aten, bei der als Tr·ager der Magnetk·opfe Piezoelemente verwendet sind, die an einem Ende fest in einer rotierenden Halterung eingespannt und an ihrem auslenkbaren Ende mit dem Magnetkopf verbunden sind.
Seit einiger Zeit werden beispielsweise in Videorecordern zur Spurnachf·uhrung Piezoelemente (in diesem Zusammenhang auch "Aktuatoren" oder Bimorphe" genannt) verwendet, an deren freischwingenden Enden die Magnetk·opfe befestigt sind. Die Piezoelemente weisen die Eigenschaft auf, dass sie beim Anlegen einer Spannung je nach Polarit·at in die eine oder andere Richtung ausgelenkt werden, so dass die Magnet k·opfe senkrecht zur Abtastrichtung bewegt werden k·onnen. Steuert man die Piezoelemente mit einer Regelspannung entsprechend dem Spurfehler an, so folgen die Videok·opfe genau den vorgesehenen Spuren.
An ihren anderen Enden sind die Piezoelemente fest in einen Piezoeiementhalter eingespannt, der entweder selbst rotiert oder starr mit dem rotierenden Kopfrad des Videorecorders verbunden ist. Die freischwingende L·ange des Piezoelementes ist ein Mass f·ur die erreichbare Kopfauslenkung.
Die Figuren 1 und 2 zeigen bekannte Anordnungen zur Spurnachf·uhrung in Videorecordern. Die Magnetk·opfe 2 und 3 sind an den freischwingenden Enden der Piezoelemente 4 und 5 befestigt (z. B. aufgeklebt). Die freischwingenden L·angen der Piezoelemente sind mit b bezeichnet. An ihren anderen Enden sind die Piezoelemente in einen Piezoelementhalter 1 eingespannt, der entweder selbst als rotierendes Teil ausgebildet oder mit dem rotierenden Kopfrad des Videorecorders starr verbunden ist. Die Einspannl·ange der Piezoelemente in die Piezoelementhalter ist mit a bezeichnet.
Neuere Trends in der Video technik f·uhren zu immer kleineren Kopf r·adern, was zur Folge hat, dass die freischwingenden L·angen der Piezoelemente und damit auch die erreichbare Kopfauslenkung immer kleiner wird.
Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, eine Einrichtung zur Erh·ohung der Piezoelementauslenkung zu schaffen, die sich insbesondere f·ur kleine Magnetbandger·ate eignet, billig ist und eine praktisch azimutfehlerfreie Wiedergabe der magnetisch aufgezeichneten Signale erm·oglicht.
Diese Aufgabe wird nach der vorliegenden Erfindung dadurch gel·ost, dass die Piezoelemente schr·ag zur Verbindungslinie zwischen zugeordnetem Magnetkopf und Drehpunkt der rotierenden Halterung bis etwa in die H·ohe dieses Drehpunktes verlaufen und dass die Piezoelemente zur Vermeidung von Azimutfehlern schr·ag in die rotierende Halterung eingespannt sind.
Die Vorteile der Erfindung liegen darin, dass insbesondere bei Magnetbandger·aten mit kleinen Kopfr·adern die freischwingenden L·angen der Piezoelemente und damit die erreichbare Auslenkung vergr·ossert wird.
Im folgenden wird ein Ausf·uhrungsbeispiel f·ur die vorliegende Erfindung mit Hilfe der Figur 3 n·aher erl·autert. Die Magnetk·opfe 2 und 3 sind an den freischwingenden Enden der Piezoelemente 4 und 5 befestigt. Die freischwingenden L·angen'der Piezoelemente sind mit b bezeichnet.
Durch die Anordnung der Piezoelemente 4, 5 schr·ag zur Verbindungslinie 6, 7 zwischen zugeordnetem Magnetkopf 2, 3 und Drehpunkt 8 der rotierenden Halterung 1 bis etwa in H·ohe dieses Drehpunktes wird die freischwingende L·ange jedes Piezoelementes vergr·ossert. An ihren anderen Enden sind die Piezoelemente in den Piezoelementhalter 1 eingespannt.
Diese Einspannung erfolgt im Gegensatz zum Stand der Technik schr·ag, um die sonst bei der Auslenkung der Piezoelemente zu erwartenden Azimutfehler der Magnetk·opfe zu kompensieren. Damit wird eine praktisch azimutfehlerfreie Wiedergabe der magnetisch aufgezeichneten Signale erm·oglicht. Die Einspannl·ange, unter der hier der Mittelwert der Strecken al und a2 verstanden wird, ist mit a bezeichnet.
Mit einer Anordnung nach der vorliegenden Erfindung wird erreicht, dass im Vergleich zum Stand der Technik bei sonst gleichen Bedingungen (insbesondere bei gleicher Regelspannung)die erreichbare Auslenkung der Piezoelemente vergr·ossert wird.
Die Erfindung ist nicht auf das vorliegende Ausf·uhrungsbeispiel beschr·ankt. Beispielsweise spielt es keine Rolle, welcher Art die Verbindungen zwischen Magnetkopf und Piezoelement sowie Piezoelement und Piezoelementhalter sind.


GRUNDIG SYSTEM 2000  VIDEO 2X4-PLUS   SYSTEM VIDEO2000 Scan tracking arrangement for videorecorders using piezoelectric elements. (DYNAMIC TRACK FOLLOWING)
 1. Scan tracking arrangement in video recorders having a rotating head wheel, in which arrangement the magnetic heads are attached to piezoelectric elements and each head has a tape contact phase and a non-contact phase during one full revolution of the head wheel, and in which arrangement a voltage which holds the head on the intended track is applied to the piezoelectric element of a head which is in tape contact at that time, and in which arrangement a decaying alternating voltage for eliminating hysteresis effects of the piezoelectric element is applied ot the piezoelectric element of a head which is not in tape contact at that time, characterized by the following features : the decaying alternating voltage is rectangular and the frequency of the decaying alternating voltage for eliminating hysteresis effets of the piezoelectric element is just below the frequency of mechanical renonance of the piezoelectric element.

1. ANORDNUNG ZUR SPURNACHF·UHRUNG IN VIDEORECORDERN UNTER VERWENDUNG VON PIEZOELDIENTEN PATENTANS PRUCH Anordnung zur Spurnachf·uhrung in Videorecordern mit einem rotierenden Kopfrad, wobei die Magnetk·opfe an Piezoelementen befestigt sind und jeder Kopf w·ahrend einer Vollumdrehung des Kopfrades eine Bandeingriffphase und eine Nichteingriffphase hat, und wobei an das Piezoelement eines Kopfes, der gerade im Bandeingriff steht, eine Spannung angelegt wird, die den Kopf auf der vorgesehenen Spur h·alt, und wobei an das Piezoelement eines Kopfes, der gerade nicht im Bandeingriff steht, eine abklingende Wechselspannung zur Beseitigung von Hystereseeffekten des Piezoelementes angelegt wird, gekennzeichnet durch die folgenden Merkmale: : - die abklingende Wechselspannung ist rechteckf·ormig und - die Frequenz der abklingenden Wechselspannung zur Beseitigung von Hystereseeffekten des Piezoelemen tes liegt knapp unterhalb der mechanischen Reso nanzfrequenz des Piezoelementes.

Description:
ANORDNUNG ZUR SPURNACHF·UHRUNG IN VIDEORECORDERN UNTER VERWENDUNG VON PIEZOELEMENTEN BESCHREIBUNG Die Erfindung betrifft eine Anordnung zur Spurnachf·uhrung in Video
recordern mit einem rotierenden Kopfrad, wobei die Magnetk·opfe an Piezoelementen befestigt sind und jeder Kopf w·ahrend einer Vollumdrehung des Kopfrades eine Bandeingriffphase und eine Nichteingriffphase hat, und wobei an das Piezoelement eines Kopfes, der gerade imBandeingriff steht, eine Spannung angelegt wird, die den Kopf auf der vorgesehenen Spur h·alt, und wobei an das Piezoelement eines Kopfes, der gerade nicht im Bandeingriff steht, eine abklingende Wechselspannung zur Beseitigung des Hystereseeffektes des Piezoelementes angelegt wird.
Seit einiger Zeit werden in Videorecordern zur exakten Spurhaltung Piezoelemente (in diesem Zusammenhang auch "Aktuatoren" oder Eimorphe" genannt) verwendet, auf denen die Magnetk·opfe befestigt sind. Die Piezoelemente weisen die Eigenschaft auf, dass sie beim Anlegen einer Spannung je nach Polarit·at in die eine oder in- die andere Richtung ausgelenirwerden, so dass die Magnetk·opfe senkrecht zur Abtastrichtung bewegt werden k·onnen. Steuert man die Piezoelemente mit einer Regelspannung entsprechend dem Spurfehler an, so folgen die Videok·opfe genau den vorgesehenen Spuren.
Aus der europ·aischen Offenlegungsschrift mit der Publikationsnummer 0091 750 ist eine Anordnung zur Spursteuerung bekannt, bei der ein auf einem Piezoelement befestigter Magnetkopf w·ahrend der Bandeingriffsphase durch das Anlegen einer positiven oder negativen Gleichspannung an eine vorgegebene Stelle gebracht wird. Nach dem Abschalten dieser Gleichspannung am Beginn der Nichteingriffsphase kehrt die Kopf-Piezoelement-Einheit nicht wieder exakt in ihre Ausgangsposition zur·uck, da aufgrund des Hystereseeffektes im Piezoelement eine Restauslenkung verbleibt, die die Nullpunktlage der Kopf-Piezoelement-Einheit ver·andert. Demzufolge werden bei der n·achsten Bandeingriffsphase dieses Kopfes Spurfehler auftreten.
Um diese m·oglichst schnell auszuregeln, ·uberlagert man der an das Piezoelement angelegten Gleichspannung w·ahrend der Nichteingriffsphase eine abklingende sinusf·ormige Wechselspannung. Nach dem Abklingen dieser sinusf·ormigen Wechselspannung liegt am Piezoelement die Spannung an, die die jeweils geforderte Ablenkung des Magnetkopfes bewirkt.
Des weiteren ist aus der europ·aischen Offenlegungsschrift mit der Publikationsnummer 0091 764 eine Vorrichtung bekannt, die ebenso wie der Erfindungsgegenstand zur Spurregelung den Piezoeffekt ausnutzt.
Bei der bekannten Vorrichtung sind zwei um 180 Grad versetzte Magnetk·opfe an Piezoelementen befestigt, die ihrerseits fest mit dem Kopfrad verbunden sind.
Zur Vermeidung eines Spurfehlers bei im Vergleich zur Aufzeichnung unterschiedlicher Wiedergabegeschwin digkeit wird an die beiden Piezoelemente w·ahrend des jeweilyFn Bandeingriffs ein dreieckf·ormiges Spurkorrektursignal angelegt. W·ahrend des Nicht eingriffs beh·alt das Piezoelement und damit auch der daran befestigte Magnetkopf eine Restauslenkung, so dass auch bei dieser Anordnung die Nullpunktlage der Kopf Piezoelement-Einheit ver·andert wird, was am Beginn der n·achsten Bandeingriffsphase des Magnetkopfes zu einem Spurfehler f·uhrt.
Zur Vermeidung dieses Spurfehlers am Beginn der n·achsten Bandeingriffsphase wird dem Piezoelement w·ahrend der Nichteingriffsphase eine abklingende sinusf·ormige Wechselspannung zugef·uhrt, die die fehlerhafte Nullpunktlage der Kopf Piezoelement-Einheit beseitigt, d. h. die Restauslenkung des Kopfes r·uckg·angig macht, so dass der Kopf am Beginn der n·achsten Bandeingriffsphase genau die jewei1ige Soll-Spur ·ubereckt. Die bekannte Vorrich tung enth·alt weiterhin eine Umpolvorrichtung, die in Abh·angigkeit davon, ob das Piezoelement in die eine oder in die andere Richtung ausgelenkt wurde, d. h.
die Wiedergabegeschwindigkeit kleiner oder gr·osser als die Aufzeichnungsgeschwindigkeit war, dem Piezoelement eine geeignet gepolte Spannung zur Beseitigung von Hystereseefekten zuf·uhrt. Es zeigt sich also, dass der Versuch, die Hystereseefekte ohne Verwendung, einer Umpolvorrichtung f·ur die abkleme Weckselspannung zu beseitigen, noch keine zufried stellenden Ergebnisse bringt.
Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine verbesserte Anordnung zur Beseitigung von Hysterese- effekten einer Kopf-Piezoelement-Einheit zu schaffen, mit der auch ohne Verwendung einer Umpolvorrichtung die Hystereseefekte der Kopf-Piezoelement- Einheit vollst·andig beseitigt werden.
Die L·osung dieser Aufgabe erfolgt durch die kennzeichneneden Merkmale des Patentanspruchs.
Die Vorteile der Erfindung liegen nicht nur darin, dass die Videnkopfe am beginn ihrer n·achsten Bandeingriffsphase an ihrer Sollposition stehen, sondern in der mehrere auch darin dass eine Desensibilizierung der Piezoelment verwenden wird, also keine Verringerung der Empfindlichkeit gegen·uber der angeleg ten Spannung auftritt, was bei einem l·angeren Anlie gen einer Spannung (insbesondere einer hohen Gleich spannung) an einem Piezoelement der Fall sein k·onnte.
im folgenden wird die Erfindung an einem Ausf·uhrungs beispiel n·aher erl·autert. Dabei zeigen: Fig. 1 ein Blockschaltbild mit allen f·ur die Erfindung wesentlichen Bauteilen und Fig. 2 ein Diagramm, das die Verl·aufe der an die Piezoelemente angelegten Spannun gen als Funktion der Zeit zeigt.
Im Ausf·uhrungsbeispiel von Figur 1 wird dem Eingang A eines Microcomputers 1 eine auf bekannte Art und Weise erzeugte digitale, impulsbreitenvariable Regelspan nung zugef·uhrt, die eine genaue Auskunft ·uber die Ab weichung des jeweiligen Magnetkopfes von der Soll spurlage gibt. Eine detaillierte Beschreibung der Er zeugung einer derartigen Regelspannung kann beispielsweise der Zeit schrift "Grundig Technische Informationen" 3/81, S. 110 - 116, entnommen werden.
Der Microcomputer 1 erzeugt an seinem Ausgang B vom jeweiligen Betriebszustand (Aufzeichnung, Wiedergabe, Zeitlupe, Zeitraffer) abh·angige digitale Regelsignale f·ur die ?iezemente. Diese Regelsignale werden in einem Digital/Analog-Wandler 2 digital-/analog-gewan delt und zwei Schaltern 3 und 4 zugef·uhrt. Die ·Offnungs- und Schliesszeiten dieser Schalter sowie der Schalter 5 und 6 werden von den an den Ausg·angen C und D des Microcomputers 1 anliegenden Steuersignalen gesteuert. Der Schalter 3 ist immer dann geschlossen, wenn der am Piezoelement 1 befestigte Kopf im Bandeingriff steht.
Der Schalter 5 befindet sich w·ahrend dieser Zeitspanne in der Stellung b, so dass die am Ausgang des D/A-Wandlers 2 anliegende Regelspannung ·uber die Schalter 3 und 5 an das Piezoelement 1 weitergegeben wird und der am Piezoelement 1 befestigte Magnetkopf der durch die Regelspannung vorgegebenen Spur folgt.
Ist die Kopf-Piezoelement-Einheit 1 im Bandeingriff, dann befindet sich die Kopf-Piezoelement-Einheit 2 in ihrer Nichteingriffsphase. Diese Zeitspanne wird ausgenutzt, um dem Piezoelement 2 ·uber den Schalter 6, der sich hierbei in der Stellung b befindet, eine abklingende rechteckf·ormige Spannung von einem vom Microcomputer 1 gesteuerten Generator 7 zuzuf·uhren.
Damit wird eine eventuelle Restauslenkung des zugeharigen Magnetkopf es, die ihre Ursache in der Hysterese im Piezoelement 2 hat, vollst·andig beseitigt. Besonders wirkungsvoll ist gem·ass einem Merkmal der Erfindung die Beseitigung der Hystereseeffekte des Piezoelementes dann, wenn die Frequenz der angelegten Rechteckspannung knapp unterhalb der mechanischen Resonanzfrequenz (ungef·ahr 1 kHz) des Piezoelementes liegt, also beispielsweise in der Gr·ossenordnung von 700 Hz.
Hat der Magnetkopf 1 die Spur zuende gelesen bzw.
geschrieben, -so findet eine vom Microcomputer gesteuerte Kopfumschaltung statt. Jetzt wird eine am Ausgang des D/A-Wandlers 2 anliegende analoge Regelspannung durch den geschlossenen Schalter 4 und den Schalter 6, der sich in der Stellung a befindet, an das Piezoelement 2 weitergeleitet, so dass der am Piezoelement 2 befestigte Magnetkopf der ihm durch die Regelspannung aufgepr·agten Spur folgt.
Der Schalter 3 ist in dieser Phase ge·offnet. Gleichzeitig dazu wird dem Piezoelement 1 ·uber den Schalter 5, der sich in dieser Phase in der Stellung a befindet, eine abklingende Rechteckspannung von einem vom Microcomputer 1 gesteuerten Generator 8 zur vollst·andigen Beseitigung des Hystereseeffektes des Piezoelementes 1 zugef·uhrt, die eine eventuelle Restauslenkung der Kopf-Piezoelement-Einheit 1 beseitigt, so dass der Magnetkopf 1 am Beginn seines n·achsten Bandeingriffes an der richtigen Stelle steht.
Figur 2 gibt einen ·Uberblick ·uber
die an die Piezoelemente 1 und 2 angelegten Spannungen. Dabei entsprechen die Zeitintervalle [ t1, t2 ] , [ t3 > t4 ] > [ t5, t6 ] , den Bandeingriffsphasen der Kopf-Piezoelement-Einheit 1 und den Nichteingriffsphasen der Kopf-Piezoelement Einheit 2 und die Zeitintervalle [ t2, t3 ] [ t4, t5 [ t6, t7 ] , den Bandeingriffsphasen der Kopf-Piezoelement-Einheit 2 und den Nichteingriffsphasen der Kopf-Piezoelement-Einheit 1.
Die obengenannten Zeitintervalle, die f·ur die Beseitigung der Hystereseeffekte der Piezoelemente 1 bzw.
2 zur Verf·ugung stehen, liegen bei Verwendung von zwei um 180 Grad versetzten Magnetk·opfen im Normalbetrieb bei 20 msec. Es hat sich ·uberraschenderweise gezeigt, dass eine Beseitigung der Hystereseeffekte der Piezoelemente besonders wirkungsvoll ist, wenn die-Frequenz der Spannung zur Beseitigung der Hystereseeffekte knapp unterhalb der mechanischen Resonanzfrequenz der Piezoelemente gew·ahlt wird, die in der Gr·ossenordnung von 900 - 1200 Hz liegt, und eine abklingende Rechteckspannung verwendet wird. Bei der Wahl der Frequenz muss lediglich darauf geachtet werden, dass keine st·orenden Resonanzerscheinungen auftreten, d. h. dass die Frequenz nicht zu nahe bei der mechanischen Resonanzfrequenz der Piezoelemente liegt.
W·ahlt man beispielswelse 700 Hz, dann betr·agt die Dauer einer Schwingung 1,4 msec. In der zur Verf·u gung stehenden Zeitspanne von 20 msec. w·are somit eine Beseitigung der Hystereseeffekte mit ca. 14 Schwingungen m·oglich.
Der exakte Verlauf des Abklingvorganges (Verlauf der Einh·ullenden der abklingenden Rechteckspannung) richtet sich nach den physikalischen Eigenschaften des jeweils verwendeten Aktuatormaterials. Es ist in jedem Fall darauf zu achten, dass die Amplitude der letzten Rechteckschwingung hinreichend klein gew·ahlt wird.
Bei einigen neueren Entwicklungen im Videobereich (z. B. Kamerarecorder) werden immer kleinere Kopfr·ader verwendet und es liegt eine ·Uberumschlingung des Magnetbandes um das Kopfrad vor. Demzufolge werden die Nichteintauchphasen der Kopf-Piezoelement Einheiten und damit die zum Beseitigen der Hystereseeffekte zur Verf·ugung stehenden Zeitintervalle kleiner. Auch werden bei einigen neueren Trends die Zeitintervalle, in denen Spannungen (insbesondere Gleichspannungn) an den Piezoelementen anliegen, und/oder die Amplituden der an die Piezoelemente angelegten Spannungen gr·osser.
Dies kann eine Desensibilisierung der Piezoelemente gegen·uber der angelegten Spannung zur Folge haben, d. h. die Piezoelemente k·onnen dann, wenn ·uber einen l·angeren Zeitraum eine hohe Gleichspannung--an ihnen anliegt-, gegen·ubn der angelegten Spannung unempfindlich werden, so dass Spurfehler entstehen. Auch dieser Nachteil wird durch eine Beseitigung der Hystereseeffekte nach der vorliegenden Erfindung in vorteilhafter Weise vermieden.



GRUNDIG SYSTEM 2000  VIDEO 2X4-PLUS  SYSTEM VIDEO2000 Method for distortion-free still picture reproduction with magnetic video tape:
 A method for distortion-free still picture reproduction from magnetic video tape slant tracks wherein the tracks are recorded and scanned without any guard band therebetween by means of two video heads which rotate in a common plane with different azimuth angles. During still picture recording, two adjacent slant tracks are continuously or repetitively scanned by two rotating video hands which have different azimuth angles with one head displaced axially by one slant track width with respect to the other. During still mode reproduction, the two adjacent slant tracks are continuously scanned by mechanically deflecting the two rotating video heads by way of plungers following a ring. 
 1. A device for the recording, reproduction, and distortion-free reproduction of slant tracks recorded on magnetic video tape without any intermediate spacing between adjacent tracks, said device comprising: a drum; two video heads mounted in said drum and adapted to rotate in a common plane with different azimuth angles; a pair of spring leaves, each of said heads being mounted to one of said springs; a pair of plungers, each plunger having one end engaging one of said springs and an opposite end; and an axially adjustable ring mounted in said drum, said ring having an upper surface which rises linearly for half the width of a slant track about half its circumference and declines linearly over the remaining half of its circumference, said ring being adjustable between a first position out of contact with said plungers and a second position wherein said plungers' opposite ends engage said ring upper surface; and one of said plungers is shorter than the other of said plungers by the width of a slant track.

Description:
BACKGROUND OF THE INVENTION
The present invention relates to video recording and in particular to reproducing still pictures recorded along slant tracks on magnetic video tape.
When reproducing still pictures recorded on slant tracks on magnetic tape it is common practice to repeatedly scan the same slant track with the rotating head or heads. This is particularly true for the widely used devices wherein a field is recorded per slant track with two 180° offset video heads. The two video heads scan the same slant track in sequence and repeatedly. However, the signal-to-noise ratio with such devices is reduced when the magnetic tape is idle as compared to when the tape is moving since the scanning device of the video heads is not in conformity with the recorded tracks. This is illustrated in FIG. 1 wherein tracks 2 and 3 depict the tracks recorded (or scanned) by a video head when the tape is in motion and track 4 depicts a track recorded (or scanned) when the tape is stopped.
Heretofore, several proposals to eliminate the error resulting from the above have been proposed. For example, the angle of inclination of the total slant track cylinder may be changed so that the video heads follow the recorded tracks 2 and 3, even when the tape is idle. This is suggested in U.S. Pat. No. 3,375,331. French Pat. No. 2,107,066 suggests the vertical adjustment of the tape feed at the slant track cylinder. IBM Technical Disclosure Bulletin, June 1969, pages 33/34 suggests reciprocal movement of the video heads axially during each rotation of the head. Unfortunately, none of the above can be employed if for tape saving purposes, the slant tracks are recorded immediately adjacent to each other without any guard band and if they are recorded with different azimuth angles in order to eliminate cross talk. For example, a known device uses two video heads for recording and reproducing, wherein the azimuth angle of the gap of the one video head is 15° in clockwise direction and the azimuth angle of the gap of the other video head is 15° in counterclockwise direction. With this embodiment it is impossible to obtain a distortion-free still picture recording by means of repeated scanning of the same track, even if one of the above mentioned means for compensating for the differing angle between the scanning direction of the heads and the inclination of the recorded track is used.
In view of the above, it is an object of the present invention to provide a method to permit distortion-free still picture reproduction with such slant track devices, wherein adjacent slant tracks are recorded and scanned without a guard band therebetween and with different azimuth angles.

SUMMARY OF THE INVENTION
The above and other beneficial objects are attained in accordance with the present invention by providing a method for the distortion-free reproduction of slant track magnetic video tape wherein adjacent tracks, each containing a field, are recorded and scanned without any guard band therebetween by means of two video heads which rotate in a common plane with different azimuth angles. One of the video heads is displaced axially with respect to the other head by a distance equal to one slant track width of the magnetic tape.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:
FIG. 1 is a plan view of a length of magnetic tape having slant tracks immediately adjacent to one another recorded thereon;
FIG. 2 is a simplified schematic drawing of a mounting arrangement for video heads in accordance with the present invention;
FIG. 3 is a wind up of the ring of FIG. 2; that is, FIG. 3 sets forth the height of ring 13 as a function of angular displacement proceeding for a full 360° about the ring;
FIG. 4 is a block diagram of a circuit for carrying out the present invention electronically; and,
FIG. 5 is a waveform diagram of various outputs of the circuit of FIG. 4.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
In accordance with the present invention, an arrangement is provided to compensate for the different angles o
f the slant track when the tape is idle or moving. Reference is made to FIG. 2 wherein a first embodiment of the invention is depicted schematically. Two video heads 5 and 6 which differ in their azimuth angles are mounted on the head wheel 7 on spring plates 8 and 9. The video heads 5 and 6 are adjusted by screws 10 and 11 to their desired position, that is, so that they lie in a common rotational plane for the normal operation. A ring 13 is provided in the lower stationary slant track cylinder 12. Ring 13 can be shifted from the solid line position of FIG. 2 to the position of FIG. 2 as shown in the dotted lines, when the device is switched from normal picture reproduction to still picture reproduction. The ring 13 is divided, as shown in FIG. 3, so that its upper edge rises linearly through half its circumference. The amount of change, which is denoted by the letter "X" is equal to the width of a slant track on the magnetic tape. Plungers 14 and 15 engage the upper edges of ring 13. The distance "X" corresponds to an axial displacement of one track width taking into consideration the lever transmission on springs 8 and 9. Plunger 15 is shorter by the distance X than plunger 14. As a result, the video head 5 is displaced with respect to video head 6 by a complete track width when the ring 13 is displaced into the position indicated by the dotted lines. When rotating the head wheel 7 both video heads move axially in accordance with the upper edge of ring 13 and thereby follow the recorded tracks 2 and 3 of FIG. 1.

A circuit for carrying out the inventive method with purely electronic means is shown in FIG. 4. In this embodiment the axial adjustment of the one video head by one track width
and the subsequent axial guiding of both video heads in accordance with the recorded tracks is carried out in a commonly known manner wherein the video heads are mounted on electromechanical transducers, for example, piezoceramic elements. The control voltages for the piezoceramic must be obtained from the scanned video signals. Accordingly, the tracks must be provided with suitable signals which, on the one hand should not interfere with the chrominance signals, and on the other hand must be readable for a video head with the "wrong" azimuth angle. For these reasons only very low frequencies are used for the signal frequencies. The frequencies should be beneath the chrominance subcarrier.
In accordance with this embodiment of the invention, synchronizing pulses of the video signal are applied to the terminal 16 (see FIG. 4) and are separated in separator 17 and fed to a filter 18 which supplies constant line pulses. A voltage controlled oscillator 19 oscillates at a median frequency of, for example, 16 times line frequency, and synchronizes the line pulse received from filter 18 across the dividers 20, 21 and 22 through phase comparator 23. A further divider 24 is coupled to the inverting output of 20. The inverted and noninverted outputs of 21 and 24 are fed to a multiplexer 25 which multiplexes the outputs by approximately 90° with respect to each other in the sequence of D1, D2, D3 and D4 as shown in FIG. 5.
Vertical blanking pulses received from separator 17 are filtered in the filter device 26 (which separates the ver
tical signal) and are converted to regular frame signals in 27. The frame signals are fed to the multiplexer 25 (input A) and are also fed to divider 28, the output of which is also fed to the multiplexer (input B).
Multiplexer 25 operates as a quadruple converter and switches the D-voltages in series in accordance with logical orders from its A and B inputs. This is shown schematically in FIG. 5. The output voltage of multiplexer 25 is filtered in filter 29 and fed to the center top of switch 30. This voltage may then be fed to a terminal 31 through switch 30 and from there the output voltage is added to the frequency modulated video signal before recordation. Since each halfwave of voltage A corresponds to a field and thereby to a slant track, a voltage of quadruple line frequency is superimposed to the frequency modulated video signal and the phase of the superimposed signal changes from slant track to slant track by about 90°. Simultaneously, the divided frame pulses in 28 are fed to a pulse shaper 32 wherein they are converted as shown in FIG. 5 in such a manner that when they are added to the video signal across terminal 33, one or a plurality of follow up equalizing pulses in the vertical signal of the first field of every second frame is blanked out. In this manner each slant track is coded by virtue of the phase of the D-voltage which superimposes the frequency modulated video signal and the start of each second frame by gating the follow up equalizing pulses. The frequency of the code signals is lower than the frequency ranges for chrominance and brightness and is locked to the line frequency.
During the reproduction of a still picture, switch 30 is positioned with its center tap connecting with terminal W, switch 34 is closed and the scanned demodulated video signal is at terminal 16. The scanned frequency modulated video signal from which the code frequency is filtered out through band pass filter 36, is applied at terminal 35 and is fed to a phase comparator 38 through limiter 37. The vertical signals which are present at output 26 are tested in pulse comparator 39 by means of a time circuit to determine if follow up equalizing pulses are gated. If so, a reset (flip-flop) signal is fed to divider 28, so that in accordance with the sketch in FIG. 5 only phases D1 and D2 are discharged from the multiplexer 25 and fed to the comparator 38. The error signal of comparator 38 controls an amplifier 40, the output of which is fed to a terminal 42 across a switch 41. The electro-mechanical converters (which comprise, for example, piezoceramic elements which are not shown) are coupled to the terminal and the video heads are mounted to the piezoceramic. During recording, switch 41 is in position A and the electromechanical converters are fed with a constant bias, so that they rotate in a common plane.

PHILIPS TDA3740 VIDEO PROCESSOR AND FREQUENCY MODULATOR FOR VIDEO RECORDERS

GENERAL DESCRIPTION

The TDA3740 is a monolithic integrated circuit for video signal processing and frequency modulation
in video recorders.

Features

Video controlled amplifier with clamping stage

Fast and slow white amplitude detector

Sync amplitude detector

Black and white clip

Insertion of sync and composite video signals

Adder stage for composite video and chrominance signals

Two»stage amplification for the composite video signal with dynamic (adjustable) and linear
preemphasis

White clip with external determination of clipping level

Voltage controlled oscillator (frequency modulator)

Blanking stage for the voltage controlled oscillator and limiter amplifier
Reference voltage source

QUICK REFERENCE DATA

Supply voltage (pin 18, 28) Vp = V13, 23.27 typ. 10 V
Supply current (pin 18, 28) (record mode) Ip = I13, 23 typ. 58 mA
Supply current (pin 18) (playback mode) lp = I13 typ. 28 mA
Composite video input signal

(peak-to-peak value) V3.27(p.p) typ. 350 mV
Composite colour video output signal

(peak-to-peak value) V7_27(p.p) typ. 2 V
Chrominance input signal

(peak»to-peak value) V9_27(p.p) typ. 240 mV
Output current (pin 22, 23) I22. 23 typ. 8,5 mA
PACKAGE OUTLINE
28-lead DIL; plastic (SOT117).


PHILIPS TDA273O FM LIMITER/DEMODULATOR

The TDA2730 is :1 monolithic integrated {1lTCL1l[ for use in audio-visual equipment, e.g. :
video recorders and video disc players.

The circuit comprises an f. m. limiter/dcmodnlator for the playback signal, a video
amplifier and an electronic switch, which can he Lséd [nr drop-out elimination.

QUICK REFERENCE DATA
Supply voltage V6.11 typ. 12 V
Supply current 16 typ. 42 rnA
Input signal range (pcak-tO—peak valL e) V4_5(p,p) 30 to 2000 mV
LVidco output signal (peak-to-peak value) V2_11(p_p) typ. 4 V

 Note

The gain of the amplifier is determined by the feedback network comprising the im-
pedances between pins 2 and 3, and pins 8 and 3. The values quoted apply to the circuit
on page 7 (Fig. 1).

PINNING

l. Current setting demodulator 9. Switch input

2. Video amplifier output 10. Switch actuating input

3. Video amplifier input 11. Negative supply (ground)
4. F.M. signal input 12. Limiter output

5. F.M. signal input 13. Limiter output

6. Positive supply 14. Demodulator input

7. Switch input 15. Demodulator input

8. Switch output 16. Demodulator output

APPLICATION INFORMATION
The function is quoted against the corresponding pin number

1. Current setting of demodulator

The current into this pin directly determines the amplitude and the d. c. level of the
demodulator output I At I1 = 4 mA, optimum temperature compensation is obtained.

2. Video amplifier output
A signal up to 4 V peak-to-peak is available from this Output (Fig.1).
This can be the video signal (Fig. 1) or the f. m. signal to the delay line (drop-out
elimination: Fig. 2).
3. Video amplifier input

The demodulator output signal is the input signal to this pin (Fig. l) or the f. In.
modulated signal (Fig.2).

:4. F.M. sigal input (in conjunction with pin 5)

A frequency modulated signal of 1 V peak-to-peak is applied between pins 4 and 5.
D. C. feedback from the limiter output is applied to stabilize the operation.

5. F.M. s1g1_1al lnppt
See pin 4.


6.

10.

11.
12.

13.

14.

15.

16.

Positive supply

Correct operation can be obtained in the range 11 to 13 V.

. Switch input

The signal applied to pin 7 or to pin 9 is transferred to pin 8, depending on the
switch position. For an input level between 0 and 2, 7 V at pin 10, the signal at pin 7
is transferred to pin 8, and when between 3, 7 and 6 V the input signal at pin 9 is
transferred to pin 8.

The signal at pin 7 or pin 9 may vary from 6, S to 12 V.

The signal at pin 8 is 1, S V below the Value at pin 7 or 9.

The difference in input level at pins 7 and 9. to obtain equal output at pin 8, will be
less than 20 mV.

. Switch autwt

See pin 7.

. Switch input

See pin 7.

Switch actuating input
See pin 7.

Negative su pply (ground)

Limiter output

A balanced signal is available between pins 12 and 13. The signal amplitude is
limited to 750 mV at both outputs.

Limiter Output

See pin 12.

De mo dulator input

A phase shifted signal (with respect to the internally applied signal) is applied
between pins 14 and 15.

Demodulator input
See pin 14.

Demodulator output

The output signal is proportional to :

- current into pin 1

- slope of the phase characteristic of the network between pins 12 and 13, and pins

14 and 15

- impedance level at the output

- the sweep (Af) of the f. in. signal.

A signal of typically 540 mV is available at this pin when using the component values
in Fig. 1 and Af 2 L4 MHz.



Siemens  SAB8948 8-Bit Single-Chip Mlcrocontroller

SAB 8048 Microcontroller with factory-maskprogram mable ROM


 8-bit CPU, ROM, RAM, I/0 in single packag
 8-bit intemel timer/event counter
Instructions 1 or 2 cycles,
2.5 [L5 or 5.0 ps cycletime
 96 instructions: 70% single byte Compatible with SAB B080/8085 peripherals
 1K><8 ROM

64x8 RAM

27 I/O lines
12 single level interrupts:

internal timer/counter and externalSingle +5V supply
 Power-down mode:

15mA standby current for internal RAM .-  '

The SAB 8048/8035L are 8-bit single-chip-micro
controllers implemented in +5 V. depletion load,

N channel. silicon gate Siemens MYMOS technology
packaged in a 40-pin package. It is 100% compatible
with the industry standard 8048.

The SAB8048 contains a 1K X 8 program memory,
a 64x8 RAM data memory, 27 I/0 lines and an 8-bit
timer/counter in addition to on-boa rd oscillator and
clock circuits. For systems that require extra capa-
bility, the SAB 8048 can be expanded using standard
memories and SAB 8080/8085 peripherals. The
SAB 3035L is the equivalent of an SAB 8048 without
program memory and can be used with external

(Siemens Aktiengesellschaft)




TMS1000 / TMS1100 General

General Information:
Texas Instruments was locked in a race with Intel to create the first microprocessor. By most accounts Intel won with the 4004, but there are a few die hard TI fans who say the TMS1000 was first, because it was the first “computer on a chip” and that the 4004 was just a calculator chip.

Texas Instruments followed the Intel 8080 with the 4-bit TMS1000. So, while Intel was leading the industry in microprocessors, TI led with this industry unique design "a computer on a chip", specifically designed for control and automation purposes. The 1000 was the first MCU (MicroComputer Unit) , which is an MPU (MicroProcessor Unit) with other support chips (such as RAM, ROM, counters, timers, I/O interfaces) integrated on to the same silicon chip.

The original 1000 family consists of 6 chips the TMS1000 and TMS1200 are basic chips, the TMS1070 and TMS1270 are high voltage versions to interface to displays, the TMS1100 and TMS1300 provide twice the on-board ROM and RAM. The TMS1000, TMS1070, and TMS1100 are 28-lead packages, the TMS1200, TMS1270, and TMS1300 are 40-lead versions of the same chips (just 200 to the 28-lead chip numbers).

In the 80's TI added to the 1000 family. The 28-lead TMS1170 started with a TMS1100 base and added fluorescent display drive capability and expanded memory (2KB ROM). The TMS1370 was the same as the TMS1170 and added 27 I/O lines. An expanded memory group based on the original TMS1000 chips was also created. They were the TMS1400, TMS1470, and TMS1700 (64 Bytes RAM, 4KB ROM). There were 40-lead versions of the TMS1400 and TMS1470, which because the TMS1600 and TMS1670. CMOS versions were also added, denoted with a "C" suffix, such as TMS1200C.

The TMS1000 also had system evaluator chips. The original evaluator chips were the TMS1098 and TMS1099. These 64-lead evaluator chips were ROM-less versions of their corresponding standard chips. The TMS1099 supported the TMS1000/TMS1200 and the TMS1070/1270. The TMS1098 supported the TMS1100/1300. Later evaluators were introduced to support the entire TMS1000 family, they were the SE1000P (supports TMS1000,1070,1200,1700), SE2200P (supports TMS1100,1170,1300,1370), and the SE1400P (supports 1400, 1470, 1600, 1670).

The success of the the TMS1000 is demonstrated by its long lifecycle (over 20 years) and its expanded product line. The TMS1000 is found in many appliances, control systems, and games. Most of these chips were sourced by companies for direct use in their products and will have custom or house numbers on the chips (not the standard numbers listed above). Even TI used custom numbers in its products. The TMS1000 was used as a customized chip in the Texas Instruments "Speak and Spell" educational toy line.

 PHILIPS TDA271O CHROMINANCE SIGNAL/MIXER FOR VIDEO RECORDERS

THE  TDA271O is a monolithic integrated circuit for video recorders incorporating’ the
following functions:

controlled chrmminancc amplifier

control voltage amplifier

- mixer for the ehrominance signal

electronic recording/playl:acl< switch

A Schmitt trigger tar killing the chrominance signal
* Colour killer

 Voltages
Supply voltage (pin 1) V1: (V1.16) 0 to 13, 2 V
At pin 4 V4.15 O to VP V
At pin 5 V5-15 0 to V1: V
At pin 12 V12-15 Oto Vp V
At pin 13 V13_1f, Oto V1: V
At pin 15 V1546 Oto VP V
A: pin 9 iV9.16 max. 4 V
Currents
At pin 6 -15 max. 5 milk
At pin 7 -I7 max. 5 mA
At pin 8 -18 max. 5 mA
A: pin 11 111 max. 5 mA
Power dissipation
Total power dissipation Pmt max. 700 mW
Temperatures
Storage temperature Tstg -25 to +125 “C
Operating ambient temperature Tamb -20 to +60 °C
CHARACTERISTICS at V1: = 12 V: Tamb : 25 0C; measured in circuit on page 4 1
Inputs 3
Chrominance input (pins 2 and 3)
Input resistance R2;3_15 typ. 3, 3 ks)

_: D. C. input voltage (without signal) V2 3.15 typ. 5, 9 V

"E Input voltage range at a peak-to—peak

T burst Of 0.5 V V2:3_16 2,5tO 75 mV
SLlb‘ carrier (pin 10)
Input resistance R10_16 typ. 2 k9
D. C. input voltage (without signal) V10.16 typ. 4, 4 V
Input voltage range (peak-to-peak value) V10_16(p_p) 60 to 500 mV.

 Reference voltage (pin 12)
External reference voltage V1245 typ. 7 V

Control voltage (pin 15)

Voltage at control voltage input
for colour on V15_15
for colour off V1515.

 Colour killer input (pin 13)
Input voltage for colour off V13_16 2 6 V

Recordingzplayback switch (pin 9)

Input re si stance R9.16 typ. 1 k Q

Input voltage : for recording V9-15 S
for playback V9-15 2 0, 85

 Outputs
Colour killer output (pin 11) '
Output resistance for colour on R11_1 typ. 10 k9

Output voltage for colour off V11_16 ‘ 5 0,5 V

Recording
Output voltages (peak-to-peak values)
at a peak-to—peak burst of 0, 5 V V6;7_16(p_p) typ. 0, S V
Output voltage at pin 8 (peak~to-peak value)
at V6_15(p.p) = O, 5 V V8__16(p_p) O, 35 to 0, 5 V -’

Playback

Sub-carrier suppression at pins 6 and 7
at V1g_16(p_p) = 300 mV; V6,16(p_p) :
V7-15(p_p) = l V; sub-carrier suppression
at pins 4 and 5